Dans cet article nous présentons quelques problèmes et résultats d’homogénéisation non locale pour certaines équations de type dégénéré. Nous considérons des équations de transport, une équation des ondes dégénérée et une équation différentielle de Riccati, et nous décrivons dans chacun des cas les effets non locaux induits par homogénéisation. Nous donnons aussi quelques résultats sur l’analyse mathématique des équations des fluides miscibles en milieu poreux.
@article{AMBP_2007__14_2_149_0, author = {Amirat, Youcef and Hamdache, Kamel}, title = {Sur quelques probl\`emes d{\textquoteright}homog\'en\'eisation non locale et de fluides en milieu poreux~: une contribution de {Abdelhamid} {Ziani}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {149--186}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {2}, year = {2007}, doi = {10.5802/ambp.231}, zbl = {1158.35011}, mrnumber = {2369870}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/ambp.231/} }
TY - JOUR AU - Amirat, Youcef AU - Hamdache, Kamel TI - Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 149 EP - 186 VL - 14 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.231/ DO - 10.5802/ambp.231 LA - fr ID - AMBP_2007__14_2_149_0 ER -
%0 Journal Article %A Amirat, Youcef %A Hamdache, Kamel %T Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani %J Annales mathématiques Blaise Pascal %D 2007 %P 149-186 %V 14 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.231/ %R 10.5802/ambp.231 %G fr %F AMBP_2007__14_2_149_0
Amirat, Youcef; Hamdache, Kamel. Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 2, pp. 149-186. doi : 10.5802/ambp.231. http://www.numdam.org/articles/10.5802/ambp.231/
[1] Some questions in the theory of moments, translated by W. Fleming and D. Prill. Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, R.I., 1962 | MR | Zbl
[2] Some results in homogenization tacking memory effects, Asymp. Anal., Volume Vol. 15 (1997), pp. 229-259 | MR | Zbl
[3] Asymptotic behavior of transport equations, Appl. Anal., Volume Vol. 70, 3-4 (1999), pp. 405-430 | MR | Zbl
[4] Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23(6) (1992), pp. 1482-1518 | DOI | MR | Zbl
[5] Homogénéisation d’équations hyperboliques du premier ordre – Application aux milieux poreux, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 6, no. 5 (1989), pp. 397-417 | Numdam | Zbl
[6] Comportement limite de modèles d’équations de convection-diffusion dégénérées, C. R. Acad. Sci. Paris Sér. I Math., Volume 310, no. 11 (1990), pp. 765-768 | Zbl
[7] Étude d’une équation de transport à mémoire, C. R. Acad. Sci. Paris Sér. I Math., Volume 311, no. 11 (1990), pp. 685-688 | Zbl
[8] Homogénéisation d’un modèle d’écoulements miscibles en milieu poreux, Asymptotic Analysis, Volume 3 ̲ (1990), pp. 77-89 | Zbl
[9] Homogénéisation non locale pour des équations dégénérées à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math., Volume 312, no. 13 (1991), pp. 963-966 | MR | Zbl
[10] Homogénéisation par décomposition en fréquences d’une équation de transport dans , C. R. Acad. Sci. Paris Sér. I Math., Volume 312, no. 1 (1991), pp. 37-40 | Zbl
[11] Homogenization of a model of compressible miscible flow in porous media, Boll. U.M.I., Volume 7 (5-B) (1991), pp. 463-487 | MR | Zbl
[12] Kinetic formulation for a transport equation with memory, Comm. in P.D.E., Volume 16 (8 & 9) (1991), pp. 1287-13311 | DOI | MR | Zbl
[13] Some results on homogenization of convection-diffusion equations, Arch. Rational Mech. Anal., Volume 114, no. 2 (1991), pp. 155-178 | DOI | MR | Zbl
[14] Homogenization of parametrized families of hyperbolic problems, Proceedings of the Royal Society of Edinburgh, Volume 120 A (1992), pp. 199-221 | DOI | Zbl
[15] Homogenization of degenerate wave equations with periodic coefficients, SIAM Journal of Mathematical Analysis, Volume 24, no. 5 (1993), pp. 1226-1253 | DOI | MR | Zbl
[16] Remarques sur l’interaction d’oscillations dans une équation de transport (1993) (Technical report)
[17] Existence globale de solutions faibles pour un système parabolique-hyperbolique intervenant en dynamique des milieux poreux, C. R. Acad. Sci. Paris Sér. I Math., Volume 321, no. 2 (1995), pp. 253-258 | MR | Zbl
[18] On homogenization of ordinary differential equations and linear transport equations, Homogénéisation et Méthodes de Convergence en Calcul des Variations, Ed. G. Bouchitte, G. Buttazzo, and P. Suquet (Advances in Math. for Applied Sciences), Volume 18s, World Scientific-Singapore, 1995, pp. 29-50 | MR | Zbl
[19] Mathematical Analysis for compressible miscible displacement models in porous media, M³AS, Volume 6, no. 6 (1996), pp. 729-747 | MR | Zbl
[20] On Homogenisation of a Riccati Equation (1999) (Technical report)
[21] Global weak solutions to a parabolic system modeling a one-dimensional compressible miscible flow in porous media, Journal of Mathematical Analysis and Applications, Volume 220 (1998), pp. 697-718 | DOI | MR | Zbl
[22] Classical solutions of a parabolic-hyperbolic system modelling a three-dimensional compressible miscible flow in porous media, Applicable Analysis, Volume 72 (1–2) (1999), pp. 155-168 | DOI | MR | Zbl
[23] Asymptotic behavior of the solutions of an elliptic-parabolic system arising in flow in porous media, Z. Anal. Anwend., Volume 23, no. 2 (2004), pp. 335-351 | DOI | MR | Zbl
[24] Classical solutions for a multicomponent flow model in porous media, Differential and Integral Equations, Volume 17, no. 7-8 (2004), pp. 893-920 | MR | Zbl
[25] Global weak solutions for a nonlinear degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media, Boll. U.M.I., Volume 8 (7-B) (2004), pp. 109-128 | MR | Zbl
[26] Dynamics of fluids in porous media, Elsevier, 1972
[27] Asymptotic analysis for periodic structures, North-Holland, 1978 | MR | Zbl
[28] Approximation of Young measures by functions and an application to an optimal design problem for plates with variable thickness, Proceedings of the Royal Society of Edinburgh, Volume 124 A, no. 3 (1994), pp. 399-422 | DOI | MR | Zbl
[29] Nonlocal effects in two-dimensional conductivity, Arch. Rat. Mech. Anal., Volume 182(2) (2006), pp. 255-267 | DOI | MR | Zbl
[30] Mathematical models and finite elements for reservoir simulation, North-Holland, 1986 | Zbl
[31] Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., Volume 88(3) (1985), pp. 223-270 | DOI | MR | Zbl
[32] Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., Volume 108 (1987), pp. 667-689 | DOI | MR | Zbl
[33] Monotone matrix functions and analytic continuation, Springer-Verlag: New York, Heidelberg, Berlin, 1974 | MR | Zbl
[34] Numerical methods for a model of compressible miscible displacement in porous media, Math. Comput., Volume 41 (1983), pp. 441-459 | DOI | MR | Zbl
[35] Homogenization of linear and nonlinear transport equations, Comm. Pure Appl. Math., Volume 45 (1992) no. 3, pp. 301-326 | DOI | MR | Zbl
[36] Fading memory effects in elastic-viscoelastic composites, M²AN, Volume 31(7) (1997), pp. 927-952 | Numdam | MR | Zbl
[37] Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM J. Numer. Anal., Volume 26(2) (1989), pp. 289-319 | DOI | MR | Zbl
[38] Mathematical analysis of miscible displacement in porous media, SIAM Journal of Mathematical Analysis, Volume 23 (1992), pp. 1375-1392 | DOI | MR | Zbl
[39] On existence and uniqueness results for a coupled system modeling miscible displacement in porous media, J. Math. Anal. Appl., Volume 194 (1995), pp. 883-910 | DOI | MR | Zbl
[40] Generalized Functions 5, Academic Press, 1966 | Zbl
[41] The Radon transform, Progress in Mathematics, 5, Birkhäuser Boston, Mass., 1980 | MR | Zbl
[42] Homogenized models of composite media, Composite media and homogenization theory (Trieste, 1990) (Progr. Nonlinear Differential Equations Appl.), Volume 5, Birkhäuser Boston, Boston, MA, 1991, pp. 159-182 | MR | Zbl
[43] Statistical desciptions and plasmas physics, Handbook of Plasmas Physics 2, eds A.A. Galeev and R.N. Sudan, North Holland, 1984
[44] Homogénéisation non locale, Proceeding of the international meeting on recent methods in nonlinear analysis eds E. De Giorgi E. Magenes and U. Mosco, Bologna : Pitagora Editrice, 1979, pp. 189-203 | MR | Zbl
[45] Boundary value-problems in domains with a fine-grained boundary, Naukova Dumka, Kiev, 1974 | MR | Zbl
[46] A linear homogenization problem with time dependent coefficient, Trans. Am. Math. Soc., Volume 281, 1 (1984), pp. 179-195 | DOI | MR | Zbl
[47] Mathematical theory of stationary miscible filtration, J. Differential Equations, Volume 90 (1991), pp. 186-202 | DOI | MR | Zbl
[48] -convergence, Topics in the mathematical modelling of composite materials (Progr. Nonlinear Differential Equations Appl.), Volume 31, Birkhäuser Boston, Boston, MA, 1997, pp. 21-43 | MR | Zbl
[49] A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20(3) (1989), pp. 608-623 | DOI | MR | Zbl
[50] Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983 | MR | Zbl
[51] Fundamentals of numerical reservoir simulation, Elsevier, 1977
[52] Mathematical Problems in Viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics 35, Longman, 1987 | Zbl
[53] Méthodes d’homogénéisation pour l’étude de matériaux hétérogènes : phénomène de mémoire, Rend. Sem. Mat. Torino, Volume 36 (1978), pp. 15-25 | Zbl
[54] Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, 1980 | Zbl
[55] Dispersion of a filtration stream in a medium with random inhomogeneities, Sov. Phys. Dokl., Volume 20(3) (1975), pp. 171-173 | Zbl
[56] Dispersion of a filtration flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, Volume 4 (1976), pp. 65-69
[57] Conditional Conditional averaging of the equations of flow in random composite porous media, Transl. Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza, Volume 1 (1987), pp. 75-81 | Zbl
[58] A delay-diffusion description for contaminant dispersion, J. Fluid Mech., Volume 105, 9 (1981), pp. 469-486 | DOI | Zbl
[59] Longitudinal dispersion coefficients for varying channels, J. Fluid Mech., Volume 130 (1983), pp. 299-314 | DOI | Zbl
[60] Remarks on Homogenization, Homogenization and Effective Moduli of Materials and Media (The IMA Volumes in Mathematics and its Applications), Volume 1, Springer, New York, 1986, pp. 228-246 | MR | Zbl
[61] Memory effects and Homogenization, Arch. Rat. Mech. Anal., Volume 111, No. 2 (1990), pp. 121-133 | DOI | MR | Zbl
[62] Nonlocal effects induced by homogenization, Partial differential equations and the calculus of variations, Vol. II (Progr. Nonlinear Differential Equations Appl.), Volume 2, Birkhäuser Boston, 1989, pp. 925-938 | MR | Zbl
[63] Dispersion of soluble matter in solvent flowing slowly through a tube, Proceedings of the Royal Society of London, Volume A 219 (1953), pp. 186-203
[64] The dispersion of matter in turbulent flow through a pipe, Proceedings of the Royal Society of London, Volume A 223 (1954), pp. 446-468
Cité par Sources :