We obtain another proof of a Gaussian upper estimate for a gradient of the heat kernel on cofinite covering graphs whose covering transformation group has a polynomial volume growth. It is proved by using the temporal regularity of the discrete heat kernel obtained by Blunck [2] and Christ [3] along with the arguments of Dungey [7] on covering manifolds.
Mots clés : Gradient estimates, Random walks, Gaussian estimates for the heat kernel
@article{AMBP_2007__14_1_93_0, author = {Ishiwata, Satoshi }, title = {Discrete version of {Dungey{\textquoteright}s} proof for the gradient heat kernel estimate on coverings}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {93--102}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {14}, number = {1}, year = {2007}, doi = {10.5802/ambp.229}, zbl = {1137.60033}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.229/} }
TY - JOUR AU - Ishiwata, Satoshi TI - Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings JO - Annales mathématiques Blaise Pascal PY - 2007 SP - 93 EP - 102 VL - 14 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.229/ DO - 10.5802/ambp.229 LA - en ID - AMBP_2007__14_1_93_0 ER -
%0 Journal Article %A Ishiwata, Satoshi %T Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings %J Annales mathématiques Blaise Pascal %D 2007 %P 93-102 %V 14 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.229/ %R 10.5802/ambp.229 %G en %F AMBP_2007__14_1_93_0
Ishiwata, Satoshi . Discrete version of Dungey’s proof for the gradient heat kernel estimate on coverings. Annales mathématiques Blaise Pascal, Tome 14 (2007) no. 1, pp. 93-102. doi : 10.5802/ambp.229. http://www.numdam.org/articles/10.5802/ambp.229/
[1] Riesz transform on manifolds and heat kernel regurality, Ann. Scient. Éc. Norm. Sup., Volume 37 (2004), pp. 911-957 | Numdam | MR | Zbl
[2] Perturbation of analytic operators and temporal regularity, Colloq. Math., Volume 86 (2000), pp. 189-201 | MR | Zbl
[3] Temporal regularity for random walk on discrete nilpotent groups, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl., Volume Special Issue (1995), pp. 141-151 | MR | Zbl
[4] Riesz transforms for , Trans. Amer. Math. Soc., Volume 351 (1999), pp. 1151-1169 | DOI | MR | Zbl
[5] Non-gaussian aspects of heat kernel behaviour, J. London Math. Soc., Volume 55 (1997), pp. 105-125 | DOI | MR | Zbl
[6] Heat kernel estimates and Riesz transforms on some Riemannian covering manifolds, Math. Z., Volume 247 (2004), pp. 765-794 | DOI | MR | Zbl
[7] Some gradient estimates on covering manifolds, Bull. Pol. Acad. Sci. Math., Volume 52 (2004), pp. 437-443 | DOI | MR | Zbl
[8] A note on time regularity for discrete time heat kernel, Semigroup Forum, Volume 72 (2006), pp. 404-410 | DOI | MR | Zbl
[9] Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., Volume 53 (1981), pp. 53-73 | DOI | Numdam | MR | Zbl
[10] Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993), pp. 673-709 | DOI | MR | Zbl
[11] Asymptotic behavior of a transition probability for a random walk on a nilpotent covering graph, Contemp. Math., Volume 347 (2004), pp. 57-68 | MR | Zbl
[12] A Berry-Esseen type theorem on nilpotent covering graphs, Canad. J. Math., Volume 56 (2004), pp. 963-982 | DOI | MR | Zbl
[13] Riesz transform on graphs for , unpublished manuscript
Cité par Sources :