A maximal function on harmonic extensions of H-type groups
Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 87-101.

Let N be an H-type group and SN× + be its harmonic extension. We study a left invariant Hardy–Littlewood maximal operator M ρ on S, obtained by taking maximal averages with respect to the right Haar measure over left-translates of a family of neighbourhoods of the identity. We prove that the maximal operator M ρ is of weak type (1,1).

DOI : 10.5802/ambp.214
Vallarino, Maria 1

1 Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca Via R. Cozzi, 53 20125 Milano ITALY
@article{AMBP_2006__13_1_87_0,
     author = {Vallarino, Maria},
     title = {A maximal function on harmonic extensions of $H$-type groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {87--101},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {13},
     number = {1},
     year = {2006},
     doi = {10.5802/ambp.214},
     zbl = {1137.43003},
     mrnumber = {2233012},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/ambp.214/}
}
TY  - JOUR
AU  - Vallarino, Maria
TI  - A maximal function on harmonic extensions of $H$-type groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2006
SP  - 87
EP  - 101
VL  - 13
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - http://www.numdam.org/articles/10.5802/ambp.214/
DO  - 10.5802/ambp.214
LA  - en
ID  - AMBP_2006__13_1_87_0
ER  - 
%0 Journal Article
%A Vallarino, Maria
%T A maximal function on harmonic extensions of $H$-type groups
%J Annales mathématiques Blaise Pascal
%D 2006
%P 87-101
%V 13
%N 1
%I Annales mathématiques Blaise Pascal
%U http://www.numdam.org/articles/10.5802/ambp.214/
%R 10.5802/ambp.214
%G en
%F AMBP_2006__13_1_87_0
Vallarino, Maria. A maximal function on harmonic extensions of $H$-type groups. Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 1, pp. 87-101. doi : 10.5802/ambp.214. http://www.numdam.org/articles/10.5802/ambp.214/

[1] Astengo, F. Multipliers for a distinguished Laplacian on solvable extensions of H-type groups, Monatsh. Math., Volume 120 (1995), pp. 179-188 | DOI | MR | Zbl

[2] Cowling, M.; Dooley, A.H.; Korányi, A.; Ricci, F. H-type groups and Iwasawa decompositions, Adv. Math, Volume 87 (1991), pp. 1-41 | DOI | MR | Zbl

[3] Cowling, M.; Dooley, A.H.; Korányi, A.; Ricci, F. An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., Volume 8 (1998), pp. 199-237 | MR | Zbl

[4] Cowling, M.; Giulini, S.; Hulanicki, A.; Mauceri, G. Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth, Studia Math., Volume 111 (1994), pp. 103-121 | MR | Zbl

[5] Damek, E. Curvature of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math., Volume 53 (1987), pp. 255-268 | MR | Zbl

[6] Damek, E. Geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math., Volume 53 (1987), pp. 249-253 | MR | Zbl

[7] Damek, E.; Ricci, F. A class of nonsymmetric harmonic riemannian spaces, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992), pp. 139-142 | DOI | MR | Zbl

[8] Damek, E.; Ricci, F. Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal., Volume 2 (1992), pp. 213-248 | MR | Zbl

[9] Folland, G.B.; Stein, E.M. Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982 | MR | Zbl

[10] Gaudry, G.; Giulini, S.; Mantero, A.M. Asymmetry of maximal functions on the affine group of the line, Tohoku Math. J., Volume 42 (1990), pp. 195-203 | DOI | MR | Zbl

[11] Giulini, S. Maximal functions on the group of affine transformations of 2 , Quaderno Dip. Mat. “F. Enriques”, Milano, Volume 1 (1987)

[12] Giulini, S.; Mauceri, G. Analysis of a distinguished Laplacian on solvable Lie groups, Math. Nachr., Volume 163 (1993), pp. 151-162 | DOI | MR | Zbl

[13] Giulini, S.; Sjögren, P. A note on maximal functions on a solvable Lie group, Arch. Math. (Basel), Volume 55 (1990), pp. 156-160 | MR | Zbl

[14] Hebisch, W.; Steger, T. Multipliers and singular integrals on exponential growth groups, Math. Z., Volume 245 (2003), pp. 37-61 | DOI | MR | Zbl

[15] Kaplan, A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., Volume 258 (1975), pp. 145-159 | MR | Zbl

[16] Vallarino, M. Spectral multipliers on harmonic extensions of H -type groups (2005) (J. Lie Theory, to appear)

Cité par Sources :