This paper is a gentle introduction to some recent results involving the theory of gerbes over orbifolds for topologists, geometers and physicists. We introduce gerbes on manifolds, orbifolds, the Dixmier-Douady class, Beilinson-Deligne orbifold cohomology, Cheeger-Simons orbifold cohomology and string connections.
@article{AMBP_2004__11_2_155_0, author = {Lupercio, Ernesto and Uribe, Bernardo}, title = {An introduction to gerbes on orbifolds}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {155--180}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {11}, number = {2}, year = {2004}, doi = {10.5802/ambp.190}, zbl = {1079.53040}, mrnumber = {2109605}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ambp.190/} }
TY - JOUR AU - Lupercio, Ernesto AU - Uribe, Bernardo TI - An introduction to gerbes on orbifolds JO - Annales mathématiques Blaise Pascal PY - 2004 SP - 155 EP - 180 VL - 11 IS - 2 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.190/ DO - 10.5802/ambp.190 LA - en ID - AMBP_2004__11_2_155_0 ER -
%0 Journal Article %A Lupercio, Ernesto %A Uribe, Bernardo %T An introduction to gerbes on orbifolds %J Annales mathématiques Blaise Pascal %D 2004 %P 155-180 %V 11 %N 2 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.190/ %R 10.5802/ambp.190 %G en %F AMBP_2004__11_2_155_0
Lupercio, Ernesto; Uribe, Bernardo. An introduction to gerbes on orbifolds. Annales mathématiques Blaise Pascal, Tome 11 (2004) no. 2, pp. 155-180. doi : 10.5802/ambp.190. http://www.numdam.org/articles/10.5802/ambp.190/
[1] Twisted Orbifold -Theory (arXiv:math. AT/0107168)
[2] Versal deformations and algebraic stacks, Invent. Math., Volume 27 (1974), pp. 165-189 | DOI | MR | Zbl
[3] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Springer-Verlag, Berlin, 1972 Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 269 | MR
[4] Twisted -theory and -theory of bundle gerbes, Comm. Math. Phys., Volume 228 (2002) no. 1, pp. 17-45 | DOI | MR | Zbl
[5] Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, 107, Birkhäuser Boston Inc., Boston, MA, 1993 | MR | Zbl
[6] Holonomy on D-Branes (arXiv:hep-th/0204199)
[7] Differential characters and geometric invariants, Geometry and topology (College Park, Md., 1983/84) (Lecture Notes in Math.), Volume 1167, Springer, Berlin, 1985, pp. 50-80 | MR | Zbl
[8] A New Cohomology Theory for Orbifold (arXiv:math.AG/000 4129)
[9] A homology theory for étale groupoids, J. Reine Angew. Math., Volume 521 (2000), pp. 25-46 | DOI | MR | Zbl
[10] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) no. 36, pp. 75-109 | DOI | Numdam | MR | Zbl
[11] Strings on orbifolds. II, Nuclear Phys. B, Volume 274 (1986) no. 2, pp. 285-314 | DOI | MR
[12] Strings on orbifolds. II, Nuclear Phys. B, Volume 274 (1986) no. 2, pp. 285-314 | DOI | MR
[13] Graded Brauer groups and -theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970) no. 38, pp. 5-25 | DOI | Numdam | MR | Zbl
[14] -theory in quantum field theory, Current developments in mathematics, 2001, Int. Press, Somerville, MA, 2002, pp. 41-87 | Zbl
[15] On Ramond-Ramond fields and -theory, J. High Energy Phys. (2000) no. 5, pp. Paper 44, 14 | MR | Zbl
[16] Anomalies in string theory with D-branes, Asian J. Math., Volume 3 (1999) no. 4, pp. 819-851 | MR | Zbl
[17] Twisted equivariant -theory with complex coefficients (arXiv:math.AT/0206257)
[18] Higher-dimensional parallel transports, Math. Res. Lett., Volume 8 (2001) no. 1-2, pp. 25-33 | MR | Zbl
[19] Groupoïdes d’holonomie et classifiants, Astérisque (1984) no. 116, pp. 70-97 Transversal structure of foliations (Toulouse, 1982) | Numdam | MR | Zbl
[20] Lectures on Special Lagrangian Submanifolds (arXiv:math.DG/9907034) | MR
[21] Quadratic functions in geometry, topology,and M-theory (arXiv:math.AT/0211216)
[22] The signature theorem for -manifolds, Topology, Volume 17 (1978) no. 1, pp. 75-83 | DOI | MR | Zbl
[23] The Riemann-Roch theorem for complex -manifolds, Osaka J. Math., Volume 16 (1979) no. 1, pp. 151-159 | MR | Zbl
[24] The index of elliptic operators over -manifolds, Nagoya Math. J., Volume 84 (1981), pp. 135-157 | MR | Zbl
[25] Differential Characters for Orbifolds and string connections I (arXiv:math.DG/0311008)
[26] Differential Characters for Orbifolds and string connections II (In preparation)
[27] Gerbes over Orbifolds and Twisted K-theory (arXiv:math.AT/0105039, to appear in Comm. Math. Phys.) | MR | Zbl
[28] Holonomy for gerbes over orbifolds (arXiv:math.AT/0307114)
[29] Inertia orbifolds, configuration spaces and the ghost loop space (arXiv:math.AT/0210222, to appear in Quart. Jour. of Math.) | MR | Zbl
[30] Deligne Cohomology for Orbifolds, discrete torsion and B-fields, Geometric and Topological methods for Quantum Field Theory, World Scientific, 2002 | MR | Zbl
[31] Loop groupoids, gerbes, and twisted sectors on orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.), Volume 310, Amer. Math. Soc., Providence, RI, 2002, pp. 163-184 | MR | Zbl
[32] Classifying topos and foliations, Ann. Inst. Fourier, Volume 41 (1991), pp. 189-209 | DOI | Numdam | MR | Zbl
[33] Proof of a conjecture of A. Haefliger, Topology, Volume 37 (1998) no. 4, pp. 735-741 | DOI | MR | Zbl
[34] Orbifolds, sheaves and groupoids, -Theory, Volume 12 (1997) no. 1, pp. 3-21 | DOI | MR | Zbl
[35] Simplicial cohomology of orbifolds, Indag. Math. (N.S.), Volume 10 (1999) no. 2, pp. 269-293 | DOI | MR | Zbl
[36] Discrete torsion and twisted orbifold cohomology (arXiv:math.AG/0005299)
[37] Gerbes and twisted orbifold quantum cohomology (Preprint)
[38] Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) (Contemp. Math.), Volume 312, Amer. Math. Soc., Providence, RI, 2002, pp. 187-233 | MR | Zbl
[39] Stringy orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.), Volume 310, Amer. Math. Soc., Providence, RI, 2002, pp. 259-299 | MR | Zbl
[40] On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A., Volume 42 (1956), pp. 359-363 | DOI | MR | Zbl
[41] Classifying spaces and spectral sequences, Inst. Hautes Etudes Sci. Publ. Math., Volume 34 (1968), pp. 105-112 | DOI | Numdam | MR | Zbl
[42] Discrete torsion, quotient stacks, and string orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) (Contemp. Math.), Volume 310, Amer. Math. Soc., Providence, RI, 2002, pp. 301-331 | MR | Zbl
[43] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 (Edited by Silvio Levy) | MR | Zbl
[44] On orbifolds with discrete torsion, J. Geom. Phys., Volume 15 (1995) no. 3, pp. 189-214 | DOI | MR | Zbl
[45] Sur les théorèmes de de Rham, Comment. Math. Helv., Volume 26 (1952), pp. 119-145 | DOI | MR | Zbl
[46] Overview of -theory applied to strings, Strings 2000. Proceedings of the International Superstrings Conference (Ann Arbor, MI), Volume 16 (2001) no. 5, pp. 693-706 | MR | Zbl
Cité par Sources :