On prouve l’unicité des solutions du système de Navier-Stokes incompressible dans , où est un domaine lipschitzien borné de ().
@article{AMBP_2003__10_1_107_0, author = {Monniaux, Sylvie}, title = {Unicit\'e dans $L^d$ des solutions du syst\`eme de {Navier-Stokes~~:} cas des domaines lipschitziens}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {107--116}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {10}, number = {1}, year = {2003}, doi = {10.5802/ambp.169}, zbl = {02068412}, mrnumber = {1990012}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/ambp.169/} }
TY - JOUR AU - Monniaux, Sylvie TI - Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens JO - Annales mathématiques Blaise Pascal PY - 2003 SP - 107 EP - 116 VL - 10 IS - 1 PB - Annales mathématiques Blaise Pascal UR - http://www.numdam.org/articles/10.5802/ambp.169/ DO - 10.5802/ambp.169 LA - fr ID - AMBP_2003__10_1_107_0 ER -
%0 Journal Article %A Monniaux, Sylvie %T Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens %J Annales mathématiques Blaise Pascal %D 2003 %P 107-116 %V 10 %N 1 %I Annales mathématiques Blaise Pascal %U http://www.numdam.org/articles/10.5802/ambp.169/ %R 10.5802/ambp.169 %G fr %F AMBP_2003__10_1_107_0
Monniaux, Sylvie. Unicité dans $L^d$ des solutions du système de Navier-Stokes : cas des domaines lipschitziens. Annales mathématiques Blaise Pascal, Tome 10 (2003) no. 1, pp. 107-116. doi : 10.5802/ambp.169. http://www.numdam.org/articles/10.5802/ambp.169/
[1] On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., Volume 2 (2000), pp. 16-98 | DOI | MR | Zbl
[2] MR 2002j :76036, Mathematical Reviews, American Mathematical Society (2002) | DOI
[3] Solutions des équations de Navier-Stokes incompressibles dans un domaine extérieur, Rev. Mat. Iberoamericana, Volume 17 (2001), pp. 21-68 | DOI | EuDML | MR | Zbl
[4] The Stokes resolvent in 3D domains with conical boundary points : nonregularity in -spaces, Adv. Differential Equations, Volume 6 (2001), pp. 175-228 | MR | Zbl
[5] Unicité dans et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana, Volume 16 (2000), pp. 605-667 | EuDML | MR | Zbl
[6] Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal., Volume 159 (1998), pp. 323-368 | DOI | MR | Zbl
[7] Recent developments in the Navier-Stokes problem, Chapman & Hall, Boca Raton, 2002 (CRC Research Notes in Mathematics 431) | MR | Zbl
[8] Uniqueness of mild solutions of the Navier-Stokes system in , Comm. Partial Differential Equations, Volume 26 (2001), pp. 2211-2226 | DOI | MR | Zbl
[9] Wavelets, paraproducts, and Navier-Stokes equations, Current developments in mathematics, 1996 (Cambridge, MA), Int. Press, Boston, MA, 1997, pp. 105-212 | MR | Zbl
[10] Uniqueness of mild solutions of the Navier-Stokes equation and maximal regularity, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999), pp. 663-668 | MR | Zbl
[11] Existence of solutions in critical spaces of the Navier-Stokes system in 3D bounded Lipschitz domains (2002) (Preprint)
[12] On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains, J. Funct. Anal., Volume 195 (2002), pp. 1-11 | DOI | MR | Zbl
[13] Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders, Amer. J. Math., Volume 113 (1991), pp. 293-373 | DOI | MR | Zbl
[14] Incompressible fluid flows on rough domains, Semigroups of operators : theory and applications (Newport Beach, CA, 1998), Birkhäuser, Basel, 2000, pp. 320-334 (Progr. Nonlinear Differential Equations Appl., 42) | MR | Zbl
Cité par Sources :