We investigate the poset structure on the alternating group that arises when the latter is generated by -cycles. We study intervals in this poset and give several enumerative results, as well as a complete description of the orbits of the Hurwitz action on maximal chains. Our motivating example is the well-studied absolute order arising when the symmetric group is generated by transpositions, i.e. -cycles, and we compare our results to this case along the way. In particular, noncrossing partitions arise naturally in both settings.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.83
Mots clés : Symmetric group, Alternating group, Noncrossing partitions, Hurwitz action, zeta polynomial
@article{ALCO_2019__2_6_1285_0, author = {M\"uhle, Henri and Nadeau, Philippe}, title = {A poset structure on the alternating group generated by 3-cycles}, journal = {Algebraic Combinatorics}, pages = {1285--1310}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.83}, mrnumber = {4049847}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.83/} }
TY - JOUR AU - Mühle, Henri AU - Nadeau, Philippe TI - A poset structure on the alternating group generated by 3-cycles JO - Algebraic Combinatorics PY - 2019 SP - 1285 EP - 1310 VL - 2 IS - 6 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.83/ DO - 10.5802/alco.83 LA - en ID - ALCO_2019__2_6_1285_0 ER -
%0 Journal Article %A Mühle, Henri %A Nadeau, Philippe %T A poset structure on the alternating group generated by 3-cycles %J Algebraic Combinatorics %D 2019 %P 1285-1310 %V 2 %N 6 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.83/ %R 10.5802/alco.83 %G en %F ALCO_2019__2_6_1285_0
Mühle, Henri; Nadeau, Philippe. A poset structure on the alternating group generated by 3-cycles. Algebraic Combinatorics, Tome 2 (2019) no. 6, pp. 1285-1310. doi : 10.5802/alco.83. http://www.numdam.org/articles/10.5802/alco.83/
[1] On maximal chains in the noncrossing partition lattice, J. Comb. Theory, Ser. A, Volume 125 (2014), pp. 18-46 | DOI | Zbl
[2] Generalized noncrossing partitions and combinatorics of Coxeter groups, Memoirs of the American Mathematical Society, 202, American Mathematical Society, 2009 | MR | Zbl
[3] The absolute order on the symmetric group, constructible partially ordered sets and Cohen–Macaulay complexes, J. Comb. Theory, Ser. A, Volume 115 (2008), pp. 1286-1295 | DOI | MR | Zbl
[4] The absolute order of a permutation representation of a Coxeter group, J. Algebr. Comb., Volume 39 (2014), pp. 75-98 | DOI | MR | Zbl
[5] On the Hurwitz action in finite Coxeter groups, J. Group Theory, Volume 20 (2017), pp. 103-131 | MR | Zbl
[6] Graph theoretic method for determining Hurwitz equivalence in the symmetric group, Isr. J. Math., Volume 135 (2003), pp. 83-91 | DOI | MR
[7] The dual braid monoid, Ann. Sci. Éc. Norm. Supér. (4), Volume 36 (2003) no. 5, pp. 647-683 | DOI | Numdam | MR | Zbl
[8] Finite complex reflection arrangements are , Ann. Math., Volume 181 (2015), pp. 809-904 | DOI | MR | Zbl
[9] Minimal factorizations of a cycle and central multiplicative functions on the infinite symmetric group, J. Comb. Theory, Ser. A, Volume 76 (1996), pp. 197-212 | DOI | MR | Zbl
[10] Some properties of crossings and partitions, Discrete Math., Volume 175 (1997), pp. 41-53 | DOI | MR | Zbl
[11] Shellable and Cohen–Macaulay partially ordered sets, Trans. Am. Math. Soc., Volume 260 (1980), pp. 159-183 | DOI | MR | Zbl
[12] A partial order on the symmetric group and new ’s for the braid groups, Adv. Math., Volume 161 (2001), pp. 20-40 | DOI | MR | Zbl
[13] Alternating subgroups of Coxeter groups, J. Comb. Theory, Ser. A, Volume 115 (2008), pp. 845-877 | DOI | MR | Zbl
[14] Letter to Eduard Looijenga, 1974 (Available at http://homepage.univie.ac.at/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf)
[15] Diagonally convex directed polyominoes and even trees: a bijection and related issues, Discrete Math., Volume 256 (2002), pp. 645-654 | DOI | MR | Zbl
[16] The braid group and other groups, Q. J. Math., Volume 20 (1969), pp. 235-254 | DOI | MR | Zbl
[17] Some generalizations of Vandermonde’s convolution, Am. Math. Mon., Volume 63 (1956), pp. 84-91 | DOI | MR | Zbl
[18] The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, Eur. J. Comb., Volume 13 (1992), pp. 357-365 | DOI | MR | Zbl
[19] Transitive factorizations in the symmetric group, and combinatorial aspects of singularity theory, Eur. J. Comb., Volume 21 (2000), pp. 1001-1016 | DOI | MR | Zbl
[20] Concrete mathematics, Addison-Wesley, 1994 | Zbl
[21] Generalized non-crossing partitions and buildings, Electron. J. Comb., Volume 25 (2018), P1.24, 29 pages | MR | Zbl
[22] Representation of permutations as products of cycles of fixed length, Journal of the Australian Mathematical Society (Series A), Volume 22 (1976), pp. 321-331 | DOI | MR | Zbl
[23] Hurwitz equivalence in tuples of generalized quaternion groups and dihedral groups, Electron. J. Comb., Volume 15 (2008), R80, 10 pages | MR | Zbl
[24] Absolute order in general linear groups, J. Lond. Math. Soc., Volume 95 (2017), pp. 223-247 | DOI | MR | Zbl
[25] Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891), pp. 1-60 | DOI | Zbl
[26] Decomposition numbers for finite Coxeter groups and generalised non-crossing partitions, Trans. Am. Math. Soc., Volume 362 (2010), pp. 2723-2787 | DOI | MR | Zbl
[27] Sur les partitions non croisées d’un cycle, Discrete Math., Volume 1 (1972), pp. 333-350 | DOI | Zbl
[28] Graphs on surfaces and their applications, Springer, Berlin, 2004 | MR | Zbl
[29] The -analogue of the alternating group and its representations, J. Algebra, Volume 240 (2001), pp. 535-558 | DOI | MR | Zbl
[30] -indivisible noncrossing partitions (2019) (Available at https://arxiv.org/abs/1904.05573)
[31] Connectivity properties of factorization posets in generated groups (2017) (Available at https://arxiv.org/abs/1710.02063) | Zbl
[32] Permutation statistics on the alternating group, Adv. Appl. Math., Volume 33 (2004), pp. 676-709 | DOI | MR | Zbl
[33] Generator sets for the alternating group, Sémin. Lothar. Comb., Volume 65 (2011), B65b, 16 pages | MR | Zbl
[34] Hurwitz equivalence in tuples of dihedral groups, dicyclic groups, and semidihedral groups, Electron. J. Comb., Volume 16 (2009), R95, 17 pages | MR | Zbl
[35] Noncrossing partitions, Discrete Math., Volume 217 (2000), pp. 397-409 | MR | Zbl
[36] The Online Encyclopedia of Integer Sequences (http://www.oeis.org)
[37] Enumerative combinatorics, Vol. 2, Cambridge University Press, Cambridge, 2001 | Zbl
[38] Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 2012 (2nd edition) | Zbl
[39] On the Hurwitz action in affine Coxeter groups (2017) (Available at https://arxiv.org/abs/1710.06694)
Cité par Sources :