In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen–Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.78
Mots clés : simplicial complex, balancedness, Cohen–Macaulay, partitionability
@article{ALCO_2019__2_6_1149_0, author = {Juhnke-Kubitzke, Martina and Venturello, Lorenzo}, title = {A balanced non-partitionable {Cohen{\textendash}Macaulay} complex}, journal = {Algebraic Combinatorics}, pages = {1149--1157}, publisher = {MathOA foundation}, volume = {2}, number = {6}, year = {2019}, doi = {10.5802/alco.78}, mrnumber = {4049841}, zbl = {1428.05334}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.78/} }
TY - JOUR AU - Juhnke-Kubitzke, Martina AU - Venturello, Lorenzo TI - A balanced non-partitionable Cohen–Macaulay complex JO - Algebraic Combinatorics PY - 2019 SP - 1149 EP - 1157 VL - 2 IS - 6 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.78/ DO - 10.5802/alco.78 LA - en ID - ALCO_2019__2_6_1149_0 ER -
%0 Journal Article %A Juhnke-Kubitzke, Martina %A Venturello, Lorenzo %T A balanced non-partitionable Cohen–Macaulay complex %J Algebraic Combinatorics %D 2019 %P 1149-1157 %V 2 %N 6 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.78/ %R 10.5802/alco.78 %G en %F ALCO_2019__2_6_1149_0
Juhnke-Kubitzke, Martina; Venturello, Lorenzo. A balanced non-partitionable Cohen–Macaulay complex. Algebraic Combinatorics, Tome 2 (2019) no. 6, pp. 1149-1157. doi : 10.5802/alco.78. http://www.numdam.org/articles/10.5802/alco.78/
[1] Network reliability analysis: algorithms and complexity, Ph. D. Thesis, Cornell University (USA) (1977)
[2] Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993, xii+403 pages | MR | Zbl
[3] A non-partitionable Cohen–Macaulay simplicial complex, Adv. Math., Volume 299 (2016), pp. 381-395 | DOI | MR | Zbl
[4] Combinatorial methods in the theory of Cohen–Macaulay rings, Adv. in Math., Volume 38 (1980) no. 3, pp. 229-266 | DOI | MR | Zbl
[5] Constructible complexes and recursive division of posets, Theoret. Comput. Sci., Volume 235 (2000) no. 2, pp. 225-237 | DOI | MR | Zbl
[6] Decompositions of two-dimensional simplicial complexes, Discrete Math., Volume 308 (2008) no. 11, pp. 2307-2312 | DOI | MR | Zbl
[7] Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2), Volume 96 (1972) no. 2, pp. 318-337 | DOI | MR | Zbl
[8] Decompositions, shelling and diameters of simplicial complexes and convex polyhedra, Ph. D. Thesis, Cornell University (USA) (1977), 128 pages
[9] Cohen–Macaulay quotients of polynomial rings, Advances in Math., Volume 21 (1976) no. 1, pp. 30-49 | DOI | MR | Zbl
[10] An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc., Volume 64 (1958), pp. 90-91 | DOI | MR | Zbl
[11] The upper bound conjecture and Cohen–Macaulay rings, Studies in Appl. Math., Volume 54 (1975) no. 2, pp. 135-142 | DOI | MR | Zbl
[12] Cohen–Macaulay complexes, Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) (NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci.), Volume 31, Reidel, Dordrecht, 1977, pp. 51-62 | MR | Zbl
[13] Balanced Cohen–Macaulay complexes, Trans. Amer. Math. Soc., Volume 249 (1979) no. 1, pp. 139-157 | DOI | MR | Zbl
[14] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR | Zbl
[15] Shelling polyhedral -balls and -polytopes, Discrete Comput. Geom., Volume 19 (1998) no. 2, pp. 159-174 | DOI | MR | Zbl
Cité par Sources :