We prove Lusztig’s conjectures P1–P15 for the affine Weyl group of type
Révisé le :
Accepté le :
Publié le :
Mots-clés : Kazhdan–Lusztig theory, Plancherel formula, affine Hecke algebras
@article{ALCO_2019__2_5_969_0, author = {Guilhot, J\'er\'emie and Parkinson, James}, title = {Balanced representations, the asymptotic {Plancherel} formula, and {Lusztig{\textquoteright}s} conjectures for $\protect \tilde{C}_2$}, journal = {Algebraic Combinatorics}, pages = {969--1031}, publisher = {MathOA foundation}, volume = {2}, number = {5}, year = {2019}, doi = {10.5802/alco.75}, language = {en}, url = {https://www.numdam.org/articles/10.5802/alco.75/} }
TY - JOUR AU - Guilhot, Jérémie AU - Parkinson, James TI - Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for $\protect \tilde{C}_2$ JO - Algebraic Combinatorics PY - 2019 SP - 969 EP - 1031 VL - 2 IS - 5 PB - MathOA foundation UR - https://www.numdam.org/articles/10.5802/alco.75/ DO - 10.5802/alco.75 LA - en ID - ALCO_2019__2_5_969_0 ER -
%0 Journal Article %A Guilhot, Jérémie %A Parkinson, James %T Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for $\protect \tilde{C}_2$ %J Algebraic Combinatorics %D 2019 %P 969-1031 %V 2 %N 5 %I MathOA foundation %U https://www.numdam.org/articles/10.5802/alco.75/ %R 10.5802/alco.75 %G en %F ALCO_2019__2_5_969_0
Guilhot, Jérémie; Parkinson, James. Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for $\protect \tilde{C}_2$. Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 969-1031. doi : 10.5802/alco.75. https://www.numdam.org/articles/10.5802/alco.75/
[1] Semicontinuity properties of Kazhdan–Lusztig cells, N. Z. J. Math., Volume 39 (2009), pp. 171-192 | MR | Zbl
[2] Kazhdan-Lusztig cells with unequal parameters, Algebra and Applications, 24, Cham: Springer, 2017, xxv + 348 pages | MR | Zbl
[3] Left cells in type
[4]
[5] The Hodge theory of Soergel bimodules, Ann. Math. (2), Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl
[6] Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters, Represent. Theory, Volume 6 (2002), pp. 1-30 | DOI | MR | Zbl
[7] Computing Kazhdan–Lusztig cells for unequal parameters, J. Algebra, Volume 281 (2004) no. 1, pp. 342-365 | DOI | MR | Zbl
[8] On Iwahori–Hecke algebras with unequal parameters and Lusztig’s isomorphism theorem, Pure Appl. Math. Q., Volume 7 (2011) no. 3, pp. 587-620 | DOI | MR | Zbl
[9] CHEVIE – A system for computing and processing generic character tables, Appl. Algebra Eng. Commun. Comput., Volume 7 (1996) no. 3, pp. 175-210 | DOI | MR | Zbl
[10] Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs, 21, Oxford: Clarendon Press, 2000, xv + 446 pages | MR | Zbl
[11] Alcove walks and nearby cycles on affine flag manifolds, J. Algebr. Comb., Volume 26 (2007) no. 4, pp. 415-430 | DOI | MR | Zbl
[12] Kazhdan–Lusztig cells in affine Weyl groups of rank 2, Int. Math. Res. Not., Volume 2010 (2010) no. 17, pp. 3422-3462 | MR | Zbl
[13] A proof of Lusztig’s conjectures for affine type
[14] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl
[15] Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Symp. Pure Math.), Volume 36 (1980), pp. 185-203 (Honololu/Hawaii 1979) | DOI | Zbl
[16] Left cells in Weyl groups, Lie group representations I (Lect. Notes Math.), Volume 1024 (1983), pp. 99-111 (Proc. Spec. Year, Univ. Md., College Park 1982-83) | DOI | MR | Zbl
[17] Hecke algebras with unequal parameters, 18, American Mathematical Society (AMS), Providence, RI, 2003, vi + 136 pages | MR | Zbl
[18] The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR | Zbl
[19] On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu, Volume 3 (2004) no. 4, pp. 531-648 | DOI | MR | Zbl
[20] On calibrated representations and the Plancherel theorem for affine Hecke algebras, J. Algebr. Comb., Volume 40 (2014) no. 2, pp. 331-371 | DOI | MR | Zbl
[21] Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux, Pure Appl. Math. Q., Volume 2 (2006) no. 4, pp. 963-1013 | MR | Zbl
[22] et al. GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4, 1997 (Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany)
[23] The weighted universal Coxeter group and some related conjectures of Lusztig., J. Algebra, Volume 441 (2015), pp. 678-694 | MR | Zbl
[24] A decomposition formula for the Kazhdan-Lusztig basis of affine Hecke algebras of rank 2 (2015) (https://arxiv.org/abs/1509.05991)
[25] Conjectures P1–P15 for Coxeter groups with complete graph (2019) (https://arxiv.org/abs/1903.00078)
Cité par Sources :