We prove Lusztig’s conjectures P1–P15 for the affine Weyl group of type for all choices of positive weight function. Our approach to computing Lusztig’s -function is based on the notion of a “balanced system of cell representations”. Once this system is established roughly half of the conjectures P1–P15 follow. Next we establish an “asymptotic Plancherel Theorem” for type , from which the remaining conjectures follow. Combined with existing results in the literature this completes the proof of Lusztig’s conjectures for all rank and affine Weyl groups for all choices of parameters.
Révisé le :
Accepté le :
Publié le :
Mots clés : Kazhdan–Lusztig theory, Plancherel formula, affine Hecke algebras
@article{ALCO_2019__2_5_969_0, author = {Guilhot, J\'er\'emie and Parkinson, James}, title = {Balanced representations, the asymptotic {Plancherel} formula, and {Lusztig{\textquoteright}s} conjectures for $\protect \tilde{C}_2$}, journal = {Algebraic Combinatorics}, pages = {969--1031}, publisher = {MathOA foundation}, volume = {2}, number = {5}, year = {2019}, doi = {10.5802/alco.75}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.75/} }
TY - JOUR AU - Guilhot, Jérémie AU - Parkinson, James TI - Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for $\protect \tilde{C}_2$ JO - Algebraic Combinatorics PY - 2019 SP - 969 EP - 1031 VL - 2 IS - 5 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.75/ DO - 10.5802/alco.75 LA - en ID - ALCO_2019__2_5_969_0 ER -
%0 Journal Article %A Guilhot, Jérémie %A Parkinson, James %T Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for $\protect \tilde{C}_2$ %J Algebraic Combinatorics %D 2019 %P 969-1031 %V 2 %N 5 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.75/ %R 10.5802/alco.75 %G en %F ALCO_2019__2_5_969_0
Guilhot, Jérémie; Parkinson, James. Balanced representations, the asymptotic Plancherel formula, and Lusztig’s conjectures for $\protect \tilde{C}_2$. Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 969-1031. doi : 10.5802/alco.75. http://www.numdam.org/articles/10.5802/alco.75/
[1] Semicontinuity properties of Kazhdan–Lusztig cells, N. Z. J. Math., Volume 39 (2009), pp. 171-192 | MR | Zbl
[2] Kazhdan-Lusztig cells with unequal parameters, Algebra and Applications, 24, Cham: Springer, 2017, xxv + 348 pages | MR | Zbl
[3] Left cells in type with unequal parameters, Represent. Theory, Volume 7 (2003), pp. 587-609 | DOI | MR | Zbl
[4] -algebras, North-Holland Mathematical Library, 15, North-Holland (Elsevier), 1983 (Transl. from the French by Francis Jellett) | Zbl
[5] The Hodge theory of Soergel bimodules, Ann. Math. (2), Volume 180 (2014) no. 3, pp. 1089-1136 | DOI | MR | Zbl
[6] Constructible characters, leading coefficients and left cells for finite Coxeter groups with unequal parameters, Represent. Theory, Volume 6 (2002), pp. 1-30 | DOI | MR | Zbl
[7] Computing Kazhdan–Lusztig cells for unequal parameters, J. Algebra, Volume 281 (2004) no. 1, pp. 342-365 | DOI | MR | Zbl
[8] On Iwahori–Hecke algebras with unequal parameters and Lusztig’s isomorphism theorem, Pure Appl. Math. Q., Volume 7 (2011) no. 3, pp. 587-620 | DOI | MR | Zbl
[9] CHEVIE – A system for computing and processing generic character tables, Appl. Algebra Eng. Commun. Comput., Volume 7 (1996) no. 3, pp. 175-210 | DOI | MR | Zbl
[10] Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs, 21, Oxford: Clarendon Press, 2000, xv + 446 pages | MR | Zbl
[11] Alcove walks and nearby cycles on affine flag manifolds, J. Algebr. Comb., Volume 26 (2007) no. 4, pp. 415-430 | DOI | MR | Zbl
[12] Kazhdan–Lusztig cells in affine Weyl groups of rank 2, Int. Math. Res. Not., Volume 2010 (2010) no. 17, pp. 3422-3462 | MR | Zbl
[13] A proof of Lusztig’s conjectures for affine type with arbitrary parameters, Proc. Lond. Math. Soc., Volume 118 (2019) no. 5, pp. 1017-1304 | DOI | Zbl
[14] Representations of Coxeter groups and Hecke algebras, Invent. Math., Volume 53 (1979) no. 2, pp. 165-184 | DOI | MR | Zbl
[15] Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Symp. Pure Math.), Volume 36 (1980), pp. 185-203 (Honololu/Hawaii 1979) | DOI | Zbl
[16] Left cells in Weyl groups, Lie group representations I (Lect. Notes Math.), Volume 1024 (1983), pp. 99-111 (Proc. Spec. Year, Univ. Md., College Park 1982-83) | DOI | MR | Zbl
[17] Hecke algebras with unequal parameters, 18, American Mathematical Society (AMS), Providence, RI, 2003, vi + 136 pages | MR | Zbl
[18] The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR | Zbl
[19] On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu, Volume 3 (2004) no. 4, pp. 531-648 | DOI | MR | Zbl
[20] On calibrated representations and the Plancherel theorem for affine Hecke algebras, J. Algebr. Comb., Volume 40 (2014) no. 2, pp. 331-371 | DOI | MR | Zbl
[21] Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux, Pure Appl. Math. Q., Volume 2 (2006) no. 4, pp. 963-1013 | MR | Zbl
[22] et al. GAP – Groups, Algorithms, and Programming – version 3 release 4 patchlevel 4, 1997 (Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany)
[23] The weighted universal Coxeter group and some related conjectures of Lusztig., J. Algebra, Volume 441 (2015), pp. 678-694 | MR | Zbl
[24] A decomposition formula for the Kazhdan-Lusztig basis of affine Hecke algebras of rank 2 (2015) (https://arxiv.org/abs/1509.05991)
[25] Conjectures P1–P15 for Coxeter groups with complete graph (2019) (https://arxiv.org/abs/1903.00078)
Cité par Sources :