The image of a linear space under inversion of some coordinates is an affine variety whose structure is governed by an underlying hyperplane arrangement. In this paper, we generalize work by Proudfoot and Speyer to show that circuit polynomials form a universal Gröbner basis for the ideal of polynomials vanishing on this variety. The proof relies on degenerations to the Stanley–Reisner ideal of a simplicial complex determined by the underlying matroid, which is closely related to the external activity complex defined by Ardila and Boocher. If the linear space is real, then the semi-inverted linear space is also an example of a hyperbolic variety, meaning that all of its intersection points with a large family of linear spaces are real.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.65
@article{ALCO_2019__2_4_645_0, author = {Scholten, Georgy and Vinzant, Cynthia}, title = {Semi-inverted linear spaces and an analogue of the broken circuit complex}, journal = {Algebraic Combinatorics}, pages = {645--661}, publisher = {MathOA foundation}, volume = {2}, number = {4}, year = {2019}, doi = {10.5802/alco.65}, mrnumber = {3997516}, zbl = {1417.05254}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.65/} }
TY - JOUR AU - Scholten, Georgy AU - Vinzant, Cynthia TI - Semi-inverted linear spaces and an analogue of the broken circuit complex JO - Algebraic Combinatorics PY - 2019 SP - 645 EP - 661 VL - 2 IS - 4 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.65/ DO - 10.5802/alco.65 LA - en ID - ALCO_2019__2_4_645_0 ER -
%0 Journal Article %A Scholten, Georgy %A Vinzant, Cynthia %T Semi-inverted linear spaces and an analogue of the broken circuit complex %J Algebraic Combinatorics %D 2019 %P 645-661 %V 2 %N 4 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.65/ %R 10.5802/alco.65 %G en %F ALCO_2019__2_4_645_0
Scholten, Georgy; Vinzant, Cynthia. Semi-inverted linear spaces and an analogue of the broken circuit complex. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 645-661. doi : 10.5802/alco.65. http://www.numdam.org/articles/10.5802/alco.65/
[1] The closure of a linear space in a product of lines, J. Algebraic Combin., Volume 43 (2016) no. 1, pp. 199-235 | DOI | MR | Zbl
[2] The topology of the external activity complex of a matroid, Electron. J. Combin., Volume 23 (2016) no. 3, P3.8, 20 pages | MR | Zbl
[3] Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc., Volume 349 (1997) no. 10, pp. 3945-3975 | DOI | MR | Zbl
[4] The central curve in linear programming, Found. Comput. Math., Volume 12 (2012) no. 4, pp. 509-540 | DOI | MR | Zbl
[5] A Gröbner basis for the graph of the reciprocal plane (2017) (https://arxiv.org/abs/1703.05967)
[6] Enumeration of points, lines, planes, etc., Acta Math., Volume 218 (2017) no. 2, pp. 297-317 | DOI | MR | Zbl
[7] The Chow form of a reciprocal linear space (2016) (https://arxiv.org/abs/1610.04584) | Zbl
[8] Introduction to tropical geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015, xii+363 pages | MR | Zbl
[9] Exponential varieties, Proc. Lond. Math. Soc. (3), Volume 112 (2016) no. 1, pp. 27-56 | DOI | MR | Zbl
[10] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl
[11] Matroid theory, Oxford Graduate Texts in Mathematics, 21, Oxford University Press, Oxford, 2011, xiv+684 pages | DOI | MR | Zbl
[12] A broken circuit ring, Beiträge Algebra Geom., Volume 47 (2006) no. 1, pp. 161-166 | MR | Zbl
[13] The -polynomial of a matroid, Electron. J. Combin., Volume 25 (2018) no. 1, P1.26, 21 pages | MR | Zbl
[14] The entropic discriminant, Adv. Math., Volume 244 (2013), pp. 678-707 | DOI | MR | Zbl
[15] Livsic-type determinantal representations and hyperbolicity, Adv. Math., Volume 329 (2018), pp. 487-522 | DOI | MR | Zbl
[16] Combinatorics and commutative algebra, Progress in Mathematics, 41, Birkhäuser Boston, Inc., Boston, MA, 1996, x+164 pages | MR | Zbl
[17] Gröbner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1996, xii+162 pages | MR | Zbl
[18] Algebras generated by reciprocals of linear forms, J. Algebra, Volume 250 (2002) no. 2, pp. 549-558 | DOI | MR | Zbl
[19] Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math., Volume 97 (1995) no. 3, pp. 385-401 | Numdam | MR | Zbl
[20] Multivariate stable polynomials: theory and applications, Bull. Amer. Math. Soc. (N.S.), Volume 48 (2011) no. 1, pp. 53-84 | DOI | MR | Zbl
Cité par Sources :