We investigate generalized notions of the nerve complex for the facets of a simplicial complex. We show that the homologies of these higher nerve complexes determine the depth of the Stanley-Reisner ring as well as the -vector and -vector of . We present, as an application, a formula for computing regularity of monomial ideals.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.64
Mots clés : Nerve Complex, depth, $k$-connectivity, homologies, poset, monomial ideals
@article{ALCO_2019__2_5_803_0, author = {Dao, Hailong and Doolittle, Joseph and Duna, Ken and Goeckner, Bennet and Holmes, Brent and Lyle, Justin}, title = {Higher nerves of simplicial complexes}, journal = {Algebraic Combinatorics}, pages = {803--813}, publisher = {MathOA foundation}, volume = {2}, number = {5}, year = {2019}, doi = {10.5802/alco.64}, mrnumber = {4023567}, zbl = {1421.05099}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.64/} }
TY - JOUR AU - Dao, Hailong AU - Doolittle, Joseph AU - Duna, Ken AU - Goeckner, Bennet AU - Holmes, Brent AU - Lyle, Justin TI - Higher nerves of simplicial complexes JO - Algebraic Combinatorics PY - 2019 SP - 803 EP - 813 VL - 2 IS - 5 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.64/ DO - 10.5802/alco.64 LA - en ID - ALCO_2019__2_5_803_0 ER -
%0 Journal Article %A Dao, Hailong %A Doolittle, Joseph %A Duna, Ken %A Goeckner, Bennet %A Holmes, Brent %A Lyle, Justin %T Higher nerves of simplicial complexes %J Algebraic Combinatorics %D 2019 %P 803-813 %V 2 %N 5 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.64/ %R 10.5802/alco.64 %G en %F ALCO_2019__2_5_803_0
Dao, Hailong; Doolittle, Joseph; Duna, Ken; Goeckner, Bennet; Holmes, Brent; Lyle, Justin. Higher nerves of simplicial complexes. Algebraic Combinatorics, Tome 2 (2019) no. 5, pp. 803-813. doi : 10.5802/alco.64. http://www.numdam.org/articles/10.5802/alco.64/
[1] Different bounds on the different Betti numbers of semi-algebraic sets, Discrete and Computational Geometry, Volume 30 (2003) no. 1, pp. 65-85 | DOI | MR | Zbl
[2] Topological methods, Handbook of combinatorics, Vol. 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819-1872 | MR | Zbl
[3] Nerves, fibers and homotopy groups, Journal of Combinatorial Theory, Series A, Volume 102 (2003) no. 1, pp. 88-93 | DOI | MR | Zbl
[4] On the imbedding of systems of compacta in simplicial complexes, Fundamenta Mathematicae, Volume 35 (1948) no. 1, pp. 217-234 | DOI | MR | Zbl
[5] Cohen-Macaulay rings, Cambridge University Press, 1998, xii+403 pages | MR | Zbl
[6] A geometric perspective on sparse filtrations (2015) (https://arxiv.org/abs/1506.03797)
[7] The lcm-lattice in monomial resolutions, Mathematical Research Letters, Volume 6 (1999) no. 5, pp. 521-532 | DOI | MR | Zbl
[8] Graphs, surfaces and homology, Cambridge University Press, Cambridge, 2010, xx+251 pages | DOI | MR | Zbl
[9] Nerves of simplicial complexes, aequationes mathematicae, Volume 4 (1970) no. 1-2, pp. 63-73 | DOI | MR | Zbl
[10] Complete intersections and connectedness, American Journal of Mathematics, Volume 84 (1962) no. 3, pp. 497-508 | DOI | MR | Zbl
[11] Quotient algebras of Stanley-Reisner rings and local cohomology, J. Algebra, Volume 140 (1991) no. 2, pp. 336-343 | DOI | MR | Zbl
[12] Rank Selection and Depth Conditions for Balanced Simplicial Complexes (2018) (https://arxiv.org/abs/1802.03129)
[13] A topological colorful Helly theorem, Adv. Math., Volume 191 (2005) no. 2, pp. 305-311 | DOI | MR | Zbl
[14] An extension of a theorem of Hartshorne, Proc. Amer. Math. Soc., Volume 144 (2016) no. 3, pp. 955-962 | DOI | MR | Zbl
[15] A spectral sequence for parallelized persistence (2011) (https://arxiv.org/abs/1112.1245)
[16] On some local cohomology modules, Adv. Math., Volume 213 (2007) no. 2, pp. 621-643 | DOI | MR | Zbl
[17] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer-Verlag, New York, 2005, xiv+417 pages | MR | Zbl
[18] Topological results in combinatorics, Michigan Math. J., Volume 31 (1984) no. 1, pp. 113-128 | MR | Zbl
[19] Complex geometry of moment-angle manifolds, Mathematische Zeitschrift, Volume 284 (2016) no. 1-2, pp. 309-333 | DOI | MR | Zbl
[20] Graded syzygies, Algebra and Applications, 14, Springer-Verlag London, Ltd., London, 2011, xii+302 pages | MR | Zbl
[21] Homotopy properties of the poset of nontrivial -subgroups of a group, Adv. Math., Volume 28 (1978) no. 2, pp. 101-128 | DOI | MR | Zbl
Cité par Sources :