We study -analogues of uniform matroids, which we call -niform matroids. While uniform matroids admit actions of symmetric groups, -niform matroids admit actions of finite general linear groups. We show that the equivariant Kazhdan–Lusztig polynomial of a -niform matroid is the unipotent -analogue of the equivariant Kazhdan–Lusztig polynomial of the corresponding uniform matroid, thus providing evidence for the positivity conjecture for equivariant Kazhdan–Lusztig polynomials.
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/alco.59
Mots clés : Kazhdan–Lusztig polynomial, matroid, unipotent representation
@article{ALCO_2019__2_4_613_0, author = {Proudfoot, Nicholas}, title = {Equivariant {Kazhdan{\textendash}Lusztig} polynomials of $q$-niform matroids}, journal = {Algebraic Combinatorics}, pages = {613--619}, publisher = {MathOA foundation}, volume = {2}, number = {4}, year = {2019}, doi = {10.5802/alco.59}, mrnumber = {3997514}, zbl = {1417.05024}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.59/} }
TY - JOUR AU - Proudfoot, Nicholas TI - Equivariant Kazhdan–Lusztig polynomials of $q$-niform matroids JO - Algebraic Combinatorics PY - 2019 SP - 613 EP - 619 VL - 2 IS - 4 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.59/ DO - 10.5802/alco.59 LA - en ID - ALCO_2019__2_4_613_0 ER -
Proudfoot, Nicholas. Equivariant Kazhdan–Lusztig polynomials of $q$-niform matroids. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 613-619. doi : 10.5802/alco.59. http://www.numdam.org/articles/10.5802/alco.59/
[1] The unipotent modules of via tableaux, J. Algebraic Combin., Volume 47 (2018) no. 1, pp. 1-15 | DOI | MR
[2] On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc., Volume 165 (1972), pp. 251-273 | DOI | MR | Zbl
[3] FI-modules and stability for representations of symmetric groups, Duke Math. J., Volume 164 (2015) no. 9, pp. 1833-1910 | DOI | MR | Zbl
[4] Reduction theorems for characters of finite groups of Lie type, J. Math. Soc. Japan, Volume 27 (1975) no. 4, pp. 666-688 | DOI | MR | Zbl
[5] On Specht modules for general linear groups, J. Algebra, Volume 275 (2004) no. 1, pp. 106-142 | DOI | MR | Zbl
[6] Lectures on modular Deligne-Lusztig theory, Local Representation Theory and Simple Groups (Series of Lectures in Mathematics), Volume 29, European Mathematical Society, 2018, pp. 107-177 | DOI | MR | Zbl
[7] The Kazhdan-Lusztig polynomial of a matroid, Adv. Math., Volume 299 (2016), pp. 36-70 | DOI | MR | Zbl
[8] A representation stability theorem for VI-modules, Algebr. Represent. Theory, Volume 21 (2018) no. 1, pp. 47-60 | MR | Zbl
[9] The Kazhdan-Lusztig polynomials of uniform matroids (https://arxiv.org/abs/1806.10852)
[10] The equivariant Kazhdan–Lusztig polynomial of a matroid, J. Combin. Theory Ser. A, Volume 150 (2017), pp. 267-294 | DOI | MR | Zbl
[11] Kazhdan-Lusztig polynomials of thagomizer matroids, Electron. J. Combin., Volume 24 (2017) no. 3, P3.12, 10 pages | MR | Zbl
[12] Chow rings of vector space matroids (https://arxiv.org/abs/1802.04241)
[13] Representations of generic algebras and finite groups of Lie type, Trans. Amer. Math. Soc., Volume 280 (1983) no. 2, pp. 753-779 | DOI | MR | Zbl
[14] Stirling numbers in braid matroid Kazhdan-Lusztig polynomials (https://arxiv.org/abs/1802.00849) | Zbl
[15] Kazhdan-Lusztig polynomials of fan matroids, wheel matroids and whirl matroids (https://arxiv.org/abs/1802.03711)
[16] Coxeter orbits and eigenspaces of Frobenius, Invent. Math., Volume 38 (1976) no. 2, pp. 101-159 | DOI | MR | Zbl
[17] Combinatorics and topology of complements of hyperplanes, Invent. Math., Volume 56 (1980) no. 2, pp. 167-189 | DOI | MR | Zbl
[18] Configuration spaces, -modules, and Kazhdan-Lusztig polynomials of braid matroids, New York J. Math., Volume 23 (2017), pp. 813-832 | MR | Zbl
Cité par Sources :