Let denote a bipartite distance-regular graph with diameter , valency , and intersection numbers . By a pseudo cosine sequence of we mean a sequence of complex scalars such that and for . By an associated pseudo primitive idempotent of , we mean a nonzero scalar multiple of the matrix , where are the distance matrices of . Given pseudo primitive idempotents of , we define the pair to be taut whenever the entry-wise product is not a scalar multiple of a pseudo primitive idempotent, but is a linear combination of two pseudo primitive idempotents of . In this paper, we determine all the taut pairs of pseudo primitive idempotents of .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.51
Mots clés : distance-regular graph, pseudo primitive idempotent, taut pair
@article{ALCO_2019__2_4_499_0, author = {MacLean, Mark S. and Miklavi\v{c}, \v{S}tefko}, title = {Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents}, journal = {Algebraic Combinatorics}, pages = {499--520}, publisher = {MathOA foundation}, volume = {2}, number = {4}, year = {2019}, doi = {10.5802/alco.51}, mrnumber = {3997508}, zbl = {1417.05250}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.51/} }
TY - JOUR AU - MacLean, Mark S. AU - Miklavič, Štefko TI - Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents JO - Algebraic Combinatorics PY - 2019 SP - 499 EP - 520 VL - 2 IS - 4 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.51/ DO - 10.5802/alco.51 LA - en ID - ALCO_2019__2_4_499_0 ER -
%0 Journal Article %A MacLean, Mark S. %A Miklavič, Štefko %T Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents %J Algebraic Combinatorics %D 2019 %P 499-520 %V 2 %N 4 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.51/ %R 10.5802/alco.51 %G en %F ALCO_2019__2_4_499_0
MacLean, Mark S.; Miklavič, Štefko. Bipartite distance-regular graphs and taut pairs of pseudo primitive idempotents. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 499-520. doi : 10.5802/alco.51. http://www.numdam.org/articles/10.5802/alco.51/
[1] Algebraic Combinatorics I, Association Schemes, Mathematics lecture note series, 58, Benjamin/Cummings Publishing Company, Inc, 1984 | Zbl
[2] Distance-Regular Graphs, A Series of Modern Surveys in Mathematics, Springer-Verlag, 1989 | Zbl
[3] -homogeneous bipartite distance-regular graphs, Discrete Mathematics, Volume 187 (1998) no. 1-3, pp. 39-70 | DOI | MR | Zbl
[4] Almost -homogeneous bipartite distance-regular graphs, European Journal of Combinatorics, Volume 21 (2000) no. 7, pp. 865-876 | DOI | MR | Zbl
[5] Pseudo -homogeneous distance-regular graphs, Journal of Algebraic Combinatorics, Volume 28 (2008) no. 4, pp. 509-529 | DOI | MR | Zbl
[6] Pseudo primitive idempotents and almost -homogeneous bipartite distance-regular graphs, European Journal of Combinatorics, Volume 29 (2008) no. 1, pp. 35-44 | DOI | MR | Zbl
[7] Bipartite distance-regular graphs: the -polynomial property and pseudo primitive idempotents, Discrete Mathematics, Volume 331 (2014), pp. 27-35 | DOI | MR | Zbl
[8] Taut distance-regular graphs of odd diameter, Journal of Algebraic Combinatorics, Volume 17 (2003) no. 2, pp. 125-147 | DOI | MR | Zbl
[9] The local eigenvalues of a bipartite distance-regular graph, European Journal of Combinatorics, Volume 45 (2015), pp. 115-123 | DOI | MR | Zbl
[10] On the Terwilliger algebra of bipartite distance-regular graphs with and , Linear Algebra and its Applications, Volume 496 (2016), pp. 307-330 | DOI | Zbl
[11] Taut distance-regular graphs and the subconstituent algebra, Discrete mathematics, Volume 306 (2006) no. 15, pp. 1694-1721 | DOI | MR | Zbl
[12] The pseudo-cosine sequences of a distance-regular graph, Linear algebra and its applications, Volume 419 (2006) no. 2-3, pp. 532-555 | DOI | MR | Zbl
[13] On the Terwilliger algebra of bipartite distance-regular graphs with and , Discrete Mathematics, Volume 340 (2017) no. 3, pp. 452-466 | DOI | MR | Zbl
[14] Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra, European Journal of Combinatorics, Volume 25 (2004) no. 2, pp. 287-298 | DOI | MR | Zbl
Cité par Sources :