Bases for cluster algebras from orbifolds with one marked point
Algebraic Combinatorics, Tome 2 (2019) no. 3, pp. 355-365.

We generalize the construction of the bangle, band and bracelet bases for cluster algebras from unpunctured orbifolds to the case where there is only one marked point on the boundary.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.48
Classification : 13F60
Mots clés : cluster algebra, unpunctured orbifold, basis, snake graph
Çanakçı, İlke 1 ; Tumarkin, Pavel 2

1 Newcastle University School of Mathematics, Statistics and Physics Newcastle-upon-Tyne NE1 7RU United Kingdom
2 Durham University Department of Mathematical Sciences Lower Mountjoy Stockton Road Durham DH1 3LE United Kingdom
@article{ALCO_2019__2_3_355_0,
     author = {\c{C}anak\c{c}{\i}, \.Ilke and Tumarkin, Pavel},
     title = {Bases for cluster algebras from orbifolds with one marked point},
     journal = {Algebraic Combinatorics},
     pages = {355--365},
     publisher = {MathOA foundation},
     volume = {2},
     number = {3},
     year = {2019},
     doi = {10.5802/alco.48},
     mrnumber = {3968742},
     zbl = {07066879},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.48/}
}
TY  - JOUR
AU  - Çanakçı, İlke
AU  - Tumarkin, Pavel
TI  - Bases for cluster algebras from orbifolds with one marked point
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 355
EP  - 365
VL  - 2
IS  - 3
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.48/
DO  - 10.5802/alco.48
LA  - en
ID  - ALCO_2019__2_3_355_0
ER  - 
%0 Journal Article
%A Çanakçı, İlke
%A Tumarkin, Pavel
%T Bases for cluster algebras from orbifolds with one marked point
%J Algebraic Combinatorics
%D 2019
%P 355-365
%V 2
%N 3
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.48/
%R 10.5802/alco.48
%G en
%F ALCO_2019__2_3_355_0
Çanakçı, İlke; Tumarkin, Pavel. Bases for cluster algebras from orbifolds with one marked point. Algebraic Combinatorics, Tome 2 (2019) no. 3, pp. 355-365. doi : 10.5802/alco.48. http://www.numdam.org/articles/10.5802/alco.48/

[1] Çanakçı, İlke; Lee, Kyungyong; Schiffler, Ralf On cluster algebras from unpunctured surfaces with one marked point, Proc. Am. Math. Soc., Ser. B, Volume 2 (2015), pp. 35-49 | DOI | MR | Zbl

[2] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces, J. Algebra, Volume 382 (2013), pp. 240-281 | DOI | MR | Zbl

[3] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z., Volume 281 (2015) no. 1-2, pp. 55-102 | DOI | MR | Zbl

[4] Çanakçı, İlke; Schiffler, Ralf Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings, Int. Math. Res. Not., Volume 2019 (2019) no. 4, pp. 1145-1226 | DOI | MR | Zbl

[5] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras and triangulated orbifolds, Adv. Math., Volume 231 (2012) no. 5, pp. 2953-3002 | DOI | MR | Zbl

[6] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. (2012) no. 8, pp. 1768-1804 | DOI | MR | Zbl

[7] Felikson, Anna; Tumarkin, Pavel Bases for cluster algebras from orbifolds, Adv. Math., Volume 318 (2017), pp. 191-232 | DOI | MR | Zbl

[8] Fock, Vladimir; Goncharov, Alexander Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | MR | Zbl

[9] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl

[10] Fomin, Sergey; Thurston, Dylan Cluster algebras and triangulated surfaces Part II: Lambda lengths, Mem. Am. Math. Soc., Volume 255 (2018) no. 1223, p. v+97 | MR | Zbl

[11] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. I. Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl

[12] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl

[13] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl

[14] Musiker, Gregg; Schiffler, Ralf; Williams, Lauren Bases for cluster algebras from surfaces, Compos. Math., Volume 149 (2013) no. 2, pp. 217-263 | DOI | MR | Zbl

[15] Schiffler, Ralf Cluster algebras from surfaces: lecture notes for the CIMPA School Mar del Plata, March 2016, Homological methods, representation theory, and cluster algebras (CRM Short Courses), Springer, 2018, pp. 65-99 | DOI | MR | Zbl

[16] Thurston, Dylan Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9725-9732 | DOI | MR | Zbl

Cité par Sources :