We generalize the construction of the bangle, band and bracelet bases for cluster algebras from unpunctured orbifolds to the case where there is only one marked point on the boundary.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.48
Mots clés : cluster algebra, unpunctured orbifold, basis, snake graph
@article{ALCO_2019__2_3_355_0, author = {\c{C}anak\c{c}{\i}, \.Ilke and Tumarkin, Pavel}, title = {Bases for cluster algebras from orbifolds with one marked point}, journal = {Algebraic Combinatorics}, pages = {355--365}, publisher = {MathOA foundation}, volume = {2}, number = {3}, year = {2019}, doi = {10.5802/alco.48}, mrnumber = {3968742}, zbl = {07066879}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.48/} }
TY - JOUR AU - Çanakçı, İlke AU - Tumarkin, Pavel TI - Bases for cluster algebras from orbifolds with one marked point JO - Algebraic Combinatorics PY - 2019 SP - 355 EP - 365 VL - 2 IS - 3 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.48/ DO - 10.5802/alco.48 LA - en ID - ALCO_2019__2_3_355_0 ER -
Çanakçı, İlke; Tumarkin, Pavel. Bases for cluster algebras from orbifolds with one marked point. Algebraic Combinatorics, Tome 2 (2019) no. 3, pp. 355-365. doi : 10.5802/alco.48. http://www.numdam.org/articles/10.5802/alco.48/
[1] On cluster algebras from unpunctured surfaces with one marked point, Proc. Am. Math. Soc., Ser. B, Volume 2 (2015), pp. 35-49 | DOI | MR | Zbl
[2] Snake graph calculus and cluster algebras from surfaces, J. Algebra, Volume 382 (2013), pp. 240-281 | DOI | MR | Zbl
[3] Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z., Volume 281 (2015) no. 1-2, pp. 55-102 | DOI | MR | Zbl
[4] Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings, Int. Math. Res. Not., Volume 2019 (2019) no. 4, pp. 1145-1226 | DOI | MR | Zbl
[5] Cluster algebras and triangulated orbifolds, Adv. Math., Volume 231 (2012) no. 5, pp. 2953-3002 | DOI | MR | Zbl
[6] Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. (2012) no. 8, pp. 1768-1804 | DOI | MR | Zbl
[7] Bases for cluster algebras from orbifolds, Adv. Math., Volume 318 (2017), pp. 191-232 | DOI | MR | Zbl
[8] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci. (2006) no. 103, pp. 1-211 | DOI | Numdam | MR | Zbl
[9] Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl
[10] Cluster algebras and triangulated surfaces Part II: Lambda lengths, Mem. Am. Math. Soc., Volume 255 (2018) no. 1223, p. v+97 | MR | Zbl
[11] Cluster algebras. I. Foundations, J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 497-529 | DOI | MR | Zbl
[12] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007) no. 1, pp. 112-164 | DOI | MR | Zbl
[13] Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl
[14] Bases for cluster algebras from surfaces, Compos. Math., Volume 149 (2013) no. 2, pp. 217-263 | DOI | MR | Zbl
[15] Cluster algebras from surfaces: lecture notes for the CIMPA School Mar del Plata, March 2016, Homological methods, representation theory, and cluster algebras (CRM Short Courses), Springer, 2018, pp. 65-99 | DOI | MR | Zbl
[16] Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 27, pp. 9725-9732 | DOI | MR | Zbl
Cité par Sources :