The gonality sequence of a smooth algebraic curve comprises the minimal degrees of linear systems of rank . We explain two approaches to compute the gonality sequence of smooth curves in : a tropical and a classical approach. The tropical approach uses the recently developed Brill–Noether theory on tropical curves and Baker’s specialization of linear systems from curves to metric graphs [1]. The classical one extends the work [12] of Hartshorne on plane curves to curves on .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.47
@article{ALCO_2019__2_3_323_0, author = {Cools, Filip and D{\textquoteright}Adderio, Michele and Jensen, David and Panizzut, Marta}, title = {Brill{\textendash}Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches}, journal = {Algebraic Combinatorics}, pages = {323--341}, publisher = {MathOA foundation}, volume = {2}, number = {3}, year = {2019}, doi = {10.5802/alco.47}, mrnumber = {3968740}, zbl = {07066877}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.47/} }
TY - JOUR AU - Cools, Filip AU - D’Adderio, Michele AU - Jensen, David AU - Panizzut, Marta TI - Brill–Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches JO - Algebraic Combinatorics PY - 2019 SP - 323 EP - 341 VL - 2 IS - 3 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.47/ DO - 10.5802/alco.47 LA - en ID - ALCO_2019__2_3_323_0 ER -
%0 Journal Article %A Cools, Filip %A D’Adderio, Michele %A Jensen, David %A Panizzut, Marta %T Brill–Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches %J Algebraic Combinatorics %D 2019 %P 323-341 %V 2 %N 3 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.47/ %R 10.5802/alco.47 %G en %F ALCO_2019__2_3_323_0
Cools, Filip; D’Adderio, Michele; Jensen, David; Panizzut, Marta. Brill–Noether theory of curves on $\protect \mathbb{P}^1 \times \protect \mathbb{P}^1$: tropical and classical approaches. Algebraic Combinatorics, Tome 2 (2019) no. 3, pp. 323-341. doi : 10.5802/alco.47. http://www.numdam.org/articles/10.5802/alco.47/
[1] Specialization of linear systems from curves to graphs, Algebra Number Theory, Volume 2 (2008) no. 6, pp. 613-653 (With an appendix by Brian Conrad) | DOI | MR | Zbl
[2] Degeneration of linear series from the tropical point of view and applications, Nonarchimedean and tropical geometry (Simons Symposia), Springer, 2016, pp. 365-433 | DOI | Zbl
[3] Riemann–Roch and Abel–Jacobi theory on a finite graph, Adv. Math., Volume 215 (2007) no. 2, pp. 766-788 | DOI | MR | Zbl
[4] Linear pencils encoded in the Newton polygon, Int. Math. Res. Not. (2017) no. 10, pp. 2998-3049 | MR | Zbl
[5] Alcune applicazioni di un classico procedimento di Castelnuovo, Semin. Geom., Univ. Studi Bologna, Volume 1982-1983 (1984) no. 10, pp. 17-43 | Zbl
[6] A tropical proof of the Brill–Noether theorem, Adv. Math., Volume 230 (2012) no. 2, pp. 759-776 | DOI | MR | Zbl
[7] The gonality sequence of complete graphs, Electron. J. Comb., Volume 24 (2017) no. 4, P4.1, 20 pages | MR | Zbl
[8] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | MR | Zbl
[9] The sandpile model on and the rank of its configurations, Sémin. Lothar. Comb., Volume 77 (2016), B77h, 48 pages | MR | Zbl
[10] A Riemann–Roch theorem in tropical geometry, Math. Z., Volume 259 (2008) no. 1, pp. 217-230 | DOI | MR | Zbl
[11] On the variety of special linear systems on a general algebraic curve, Duke Math. J., Volume 47 (1980) no. 1, pp. 233-272 | MR | Zbl
[12] Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ., Volume 26 (1986) no. 3, pp. 375-386 | DOI | MR | Zbl
[13] Rank of divisors on tropical curves, J. Comb. Theory, Ser. A, Volume 120 (2013) no. 7, pp. 1521-1538 | DOI | MR | Zbl
[14] Brill–Noether theory for curves of a fixed gonality (2017) (https://arxiv.org/abs/1701.06579)
[15] On the gonality sequence of an algebraic curve, Manuscr. Math., Volume 137 (2012) no. 3-4, pp. 457-473 | DOI | MR | Zbl
[16] Clifford indices for vector bundles on curves, Affine flag manifolds and principal bundles (Trends in Mathematics), Birkhäuser, 2010, pp. 165-202 | DOI | Zbl
[17] Rank-determining sets of metric graphs, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 6, pp. 1775-1793 | DOI | MR | Zbl
[18] Tropical curves, their Jacobians and theta functions, Curves and abelian varieties (Contemporary Mathematics), Volume 465, American Mathematical Society, 2008, pp. 203-230 | DOI | MR | Zbl
[19] Zur Grundlegung der Theorie der algebraischen Raumcurven, Verl. König. Akad. Wiss., 1883
[20] Brill–Noether varieties of -gonal curves, Adv. Math., Volume 312 (2017), pp. 46-63 | DOI | MR | Zbl
[21] Introduction to the problem of minimal models in the theory of algebraic surfaces, Publications of the Mathematical Society of Japan, 4, Mathematical Society of Japan, 1958, vii+89 pages | MR | Zbl
Cité par Sources :