We give a Pieri-type formula for the sum of --Schur functions over a principal order ideal of the poset of -bounded partitions under the strong Bruhat order, whose sum we denote by . As an application of this, we also give a -rectangle factorization formula where , analogous to that of -Schur functions .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.45
Mots clés : $K$-theoretic $k$-Schur functions, Pieri rule, Coxeter groups, affine symmetric groups
@article{ALCO_2019__2_4_447_0, author = {Takigiku, Motoki}, title = {A {Pieri} formula and a factorization formula for sums of $K$-theoretic $k${-Schur} functions}, journal = {Algebraic Combinatorics}, pages = {447--480}, publisher = {MathOA foundation}, volume = {2}, number = {4}, year = {2019}, doi = {10.5802/alco.45}, mrnumber = {3997506}, zbl = {1421.05096}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.45/} }
TY - JOUR AU - Takigiku, Motoki TI - A Pieri formula and a factorization formula for sums of $K$-theoretic $k$-Schur functions JO - Algebraic Combinatorics PY - 2019 SP - 447 EP - 480 VL - 2 IS - 4 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.45/ DO - 10.5802/alco.45 LA - en ID - ALCO_2019__2_4_447_0 ER -
%0 Journal Article %A Takigiku, Motoki %T A Pieri formula and a factorization formula for sums of $K$-theoretic $k$-Schur functions %J Algebraic Combinatorics %D 2019 %P 447-480 %V 2 %N 4 %I MathOA foundation %U http://www.numdam.org/articles/10.5802/alco.45/ %R 10.5802/alco.45 %G en %F ALCO_2019__2_4_447_0
Takigiku, Motoki. A Pieri formula and a factorization formula for sums of $K$-theoretic $k$-Schur functions. Algebraic Combinatorics, Tome 2 (2019) no. 4, pp. 447-480. doi : 10.5802/alco.45. http://www.numdam.org/articles/10.5802/alco.45/
[1] On the quantum -ring of the flag manifold (2017) (https://arxiv.org/abs/1711.08414)
[2] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005, xiv+363 pages | MR | Zbl
[3] Bruhat order of Coxeter groups and shellability, Adv. Math., Volume 43 (1982) no. 1, pp. 87-100 | DOI | MR | Zbl
[4] Generalized quotients in Coxeter groups, Trans. Am. Math. Soc., Volume 308 (1988) no. 1, pp. 1-37 | DOI | MR | Zbl
[5] Curve neighborhoods of Schubert varieties, J. Differ. Geom., Volume 99 (2015) no. 2, pp. 255-283 | DOI | MR | Zbl
[6] Canonical decompositions of affine permutations, affine codes, and split -Schur functions, Electron. J. Comb., Volume 19 (2012) no. 4, 19, 41 pages | MR | Zbl
[7] A splitting criterion for the Bruhat orderings on Coxeter groups, Commun. Algebra, Volume 15 (1987) no. 9, pp. 1889-1894 | DOI | MR | Zbl
[8] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, 1990, xii+204 pages | DOI | MR | Zbl
[9] Peterson isomorphism in -theory and relativistic Toda lattice, Int. Math. Res. Not. (2018), rny051 | DOI
[10] Loop structure on equivariant -theory of semi-infinite flag manifolds (2018) (https://arxiv.org/abs/1805.01718)
[11] Subword complexes in Coxeter groups, Adv. Math., Volume 184 (2004) no. 1, pp. 161-176 | DOI | MR | Zbl
[12] Schubert polynomials for the affine Grassmannian, J. Am. Math. Soc., Volume 21 (2008) no. 1, pp. 259-281 | MR | Zbl
[13] -Schur functions and affine Schubert calculus, Fields Institute Monographs, 33, The Fields Institute for Research in the Mathematical Sciences, 2014, viii+219 pages | MR | Zbl
[14] A conjectural Peterson isomorphism in -theory, J. Algebra, Volume 513 (2018), pp. 326-343 | DOI | MR | Zbl
[15] -theory Schubert calculus of the affine Grassmannian, Compos. Math., Volume 146 (2010) no. 4, pp. 811-852 | MR | Zbl
[16] Quantum cohomology of and homology of affine Grassmannian, Acta Math., Volume 204 (2010) no. 1, pp. 49-90 | DOI | MR | Zbl
[17] From quantum Schubert polynomials to -Schur functions via the Toda lattice, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 81-93 | MR | Zbl
[18] Tableau atoms and a new Macdonald positivity conjecture, Duke Math. J., Volume 116 (2003) no. 1, pp. 103-146 | MR | Zbl
[19] Order ideals in weak subposets of Young’s lattice and associated unimodality conjectures, Ann. Comb., Volume 8 (2004) no. 2, pp. 197-219 | DOI | MR | Zbl
[20] Tableaux on -cores, reduced words for affine permutations, and -Schur expansions, J. Comb. Theory, Ser. A, Volume 112 (2005) no. 1, pp. 44-81 | DOI | MR | Zbl
[21] A -tableau characterization of -Schur functions, Adv. Math., Volume 213 (2007) no. 1, pp. 183-204 | DOI | MR | Zbl
[22] Symmetric functions and Hall polynomials, Oxford Science Publications, Clarendon Press, 1995, x+475 pages (With contributions by A. Zelevinsky) | Zbl
[23] Combinatorics of the -theory of affine Grassmannians, Adv. Math., Volume 229 (2012) no. 5, pp. 2950-2984 | DOI | MR | Zbl
[24]
(private communication, 2018)[25] A short derivation of the Möbius function for the Bruhat order, J. Algebr. Comb., Volume 25 (2007) no. 2, pp. 141-148 | DOI | Zbl
[26] Factorization formulas of --Schur functions I (2017) (https://arxiv.org/abs/1704.08643) | MR
[27] Factorization formulas of --Schur functions II (2017) (https://arxiv.org/abs/1704.08660) | Zbl
[28] Upper bounds in affine Weyl groups under the weak order, Order, Volume 16 (1999) no. 1, pp. 77-87 | DOI | MR | Zbl
Cité par Sources :