A consistent dimer model gives a non-commutative crepant resolution (= NCCR) of a -dimensional Gorenstein toric singularity. In particular, it is known that a consistent dimer model gives a class of NCCRs called steady if and only if it is homotopy equivalent to a regular hexagonal dimer model. Inspired by this result, we detect another nice property on NCCRs that characterizes square dimer models. We call such NCCRs semi-steady NCCRs, and study their properties.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.39
Mots clés : Non-commutative crepant resolutions, Dimer models, Regular tilings, Toric singularities
@article{ALCO_2019__2_2_173_0, author = {Nakajima, Yusuke}, title = {Semi-steady non-commutative crepant resolutions via regular dimer models}, journal = {Algebraic Combinatorics}, pages = {173--195}, publisher = {MathOA foundation}, volume = {2}, number = {2}, year = {2019}, doi = {10.5802/alco.39}, zbl = {1419.13019}, mrnumber = {3934827}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.39/} }
TY - JOUR AU - Nakajima, Yusuke TI - Semi-steady non-commutative crepant resolutions via regular dimer models JO - Algebraic Combinatorics PY - 2019 SP - 173 EP - 195 VL - 2 IS - 2 PB - MathOA foundation UR - http://www.numdam.org/articles/10.5802/alco.39/ DO - 10.5802/alco.39 LA - en ID - ALCO_2019__2_2_173_0 ER -
Nakajima, Yusuke. Semi-steady non-commutative crepant resolutions via regular dimer models. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195. doi : 10.5802/alco.39. http://www.numdam.org/articles/10.5802/alco.39/
[1] Rational singularities and almost split sequences, Trans. Am. Math. Soc., Volume 293 (1986) no. 2, pp. 511-531 | DOI | MR | Zbl
[2] Consistency conditions for dimer models, Glasg. Math. J., Volume 54 (2012) no. 2, pp. 429-447 | DOI | MR | Zbl
[3] Generating toric noncommutative crepant resolutions, J. Algebra, Volume 364 (2012), pp. 119-147 | DOI | MR | Zbl
[4] Toric systems and mirror symmetry, Compos. Math., Volume 149 (2013) no. 11, pp. 1839-1855 | DOI | MR | Zbl
[5] A dimer ABC, Bull. Lond. Math. Soc., Volume 48 (2016) no. 3, pp. 387-451 | DOI | MR | Zbl
[6] Derived categories of coherent sheaves, Proceedings of the International Congress of Mathematicians (Beijing, 2002). Vol.D II: Invited lectures, Higher Education Press, 2002, pp. 47-56 | Zbl
[7] Flops and derived categories, Invent. Math., Volume 147 (2002) no. 3, pp. 613-632 | DOI | MR | Zbl
[8] The McKay correspondence as an equivalence of derived categories, J. Am. Math. Soc., Volume 14 (2001) no. 3, pp. 535-554 | DOI | MR | Zbl
[9] Dimer model and Calabi-Yau algebras, Mem. Am. Math. Soc., Volume 215 (2012) no. 1011 | MR | Zbl
[10] Polytopes, rings and K-theory, Springer Monographs in Mathematics, Springer, 2009
[11] Non-commutative desingularization of determinantal varieties I, Invent. Math., Volume 182 (2010) no. 1, pp. 47-115 | DOI | MR | Zbl
[12] Cluster tilting for one-dimensional hypersurface singularities, Adv. Math., Volume 217 (2008) no. 6, pp. 2443-2484 | DOI | MR | Zbl
[13] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011 | MR | Zbl
[14] Remarks on non-commutative crepant resolutions of complete intersections, Adv. Math., Volume 224 (2010) no. 3, pp. 1021-1030 | DOI | MR | Zbl
[15] Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings, Algebr. Represent. Theory, Volume 18 (2015) no. 3, pp. 633-664 | DOI | MR | Zbl
[16] Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings, Am. J. Math., Volume 135 (2013) no. 2, pp. 561-578 | DOI | MR | Zbl
[17] Non-commutative resolutions and Grothendieck groups, J. Noncommut. Geom., Volume 9 (2015) no. 1, pp. 21-34 | DOI | MR | Zbl
[18] Gorenstein modifications and -Gorenstein rings (2016) | arXiv
[19] Potential theory on a rhombic lattice, J. Comb. Theory, Volume 5 (1968), pp. 258-272 | DOI | MR | Zbl
[20] Tilings and patterns, W. H. Freeman and Company, 1987, xii+700 pages | Zbl
[21] Properly ordered dimers, -charges, and an efficient inverse algorithm, J. High Energy Phys. (2008) no. 10, 014, 31 pages | DOI | MR | Zbl
[22] Quivers, tilings, branes and rhombi, J. High Energy Phys. (2007) no. 10, 029, 35 pages | DOI | MR
[23] Conic divisorial ideals of Hibi rings and their applications to non-commutative crepant resolutions (2017) | arXiv | Zbl
[24] A note on consistency conditions on dimer models, RIMS Kôkyûroku Bessatsu, Volume B24 (2011), pp. 143-164 | Zbl
[25] Dimer models and the special McKay correspondence, Geom. Topol., Volume 19 (2015), pp. 3405-3466 | DOI | MR | Zbl
[26] Auslander correspondence, Adv. Math., Volume 210 (2007) no. 1, pp. 51-82 | DOI | MR | Zbl
[27] On steady non-commutative crepant resolutions, J. Noncommut. Geom., Volume 12 (2018) no. 2, pp. 457-471 | DOI | MR | Zbl
[28] Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Am. J. Math., Volume 130 (2008) no. 4, pp. 1087-1149 | DOI | MR | Zbl
[29] On the Noncommutative Bondal-Orlov Conjecture, J. Reine Angew. Math., Volume 683 (2013), pp. 119-128 | MR | Zbl
[30] Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math., Volume 197 (2014) no. 3, pp. 521-586 | DOI | MR | Zbl
[31] Reduction of triangulated categories and maximal modification algebras for singularities, J. Reine Angew. Math., Volume 738 (2018), pp. 149-202 | DOI | Zbl
[32] Kleinian singularities, derived categories and Hall algebras, Math. Ann., Volume 316 (2000) no. 3, pp. 565-576 | DOI | MR | Zbl
[33] Rhombic embeddings of planar quadgraphs, Trans. Am. Math. Soc., Volume 357 (2005) no. 9, pp. 3443-3458 | DOI
[34] Non-commutative crepant resolutions: scenes from categorical geometry, Combinatorics and Homology (Progress in Commutative Algebra), Volume 1, de Gruyter, 2012, pp. 293-361 | MR | Zbl
[35] Cohen-Macaulay Representations, Mathematical Surveys and Monographs, 181, American Mathematical Society, 2012 | MR | Zbl
[36] Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 177-216 | DOI | MR | Zbl
[37] Mutations of splitting maximal modifying modules: The case of reflexive polygons, Int. Math. Res. Not. (2017) | DOI
[38] Non-commutative resolutions of quotient singularities for reductive groups, Invent. Math., Volume 210 (2017) no. 1, pp. 3-67 | DOI | MR | Zbl
[39] Noncommutative resolutions and rational singularities, Mich. Math. J., Volume 57 (2008), pp. 659-674 | DOI | MR | Zbl
[40] A note on dimer models and McKay quivers, Commun. Math. Phys., Volume 301 (2011) no. 3, pp. 723-747 | DOI | MR | Zbl
[41] Non-Commutative Crepant Resolutions, The Legacy of Niels Henrik Abel, Springer, 2004, pp. 749-770 | DOI | Zbl
[42] Three-dimensional flops and noncommutative rings, Duke Math. J., Volume 122 (2004) no. 3, pp. 423-455 | DOI | MR | Zbl
[43] Flops and Clusters in the Homological Minimal Model Program, Invent. Math., Volume 211 (2018) no. 2, pp. 435-521 | DOI | MR | Zbl
[44] Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, 1990 | MR | Zbl
Cité par Sources :