Semi-steady non-commutative crepant resolutions via regular dimer models
Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195.

A consistent dimer model gives a non-commutative crepant resolution (= NCCR) of a 3-dimensional Gorenstein toric singularity. In particular, it is known that a consistent dimer model gives a class of NCCRs called steady if and only if it is homotopy equivalent to a regular hexagonal dimer model. Inspired by this result, we detect another nice property on NCCRs that characterizes square dimer models. We call such NCCRs semi-steady NCCRs, and study their properties.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.39
Classification : 13C14, 05B45, 14E15, 16S38
Mots clés : Non-commutative crepant resolutions, Dimer models, Regular tilings, Toric singularities
Nakajima, Yusuke 1

1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
@article{ALCO_2019__2_2_173_0,
     author = {Nakajima, Yusuke},
     title = {Semi-steady non-commutative crepant resolutions via regular dimer models},
     journal = {Algebraic Combinatorics},
     pages = {173--195},
     publisher = {MathOA foundation},
     volume = {2},
     number = {2},
     year = {2019},
     doi = {10.5802/alco.39},
     zbl = {1419.13019},
     mrnumber = {3934827},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.39/}
}
TY  - JOUR
AU  - Nakajima, Yusuke
TI  - Semi-steady non-commutative crepant resolutions via regular dimer models
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 173
EP  - 195
VL  - 2
IS  - 2
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.39/
DO  - 10.5802/alco.39
LA  - en
ID  - ALCO_2019__2_2_173_0
ER  - 
%0 Journal Article
%A Nakajima, Yusuke
%T Semi-steady non-commutative crepant resolutions via regular dimer models
%J Algebraic Combinatorics
%D 2019
%P 173-195
%V 2
%N 2
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.39/
%R 10.5802/alco.39
%G en
%F ALCO_2019__2_2_173_0
Nakajima, Yusuke. Semi-steady non-commutative crepant resolutions via regular dimer models. Algebraic Combinatorics, Tome 2 (2019) no. 2, pp. 173-195. doi : 10.5802/alco.39. http://www.numdam.org/articles/10.5802/alco.39/

[1] Auslander, M. Rational singularities and almost split sequences, Trans. Am. Math. Soc., Volume 293 (1986) no. 2, pp. 511-531 | DOI | MR | Zbl

[2] Bocklandt, R. Consistency conditions for dimer models, Glasg. Math. J., Volume 54 (2012) no. 2, pp. 429-447 | DOI | MR | Zbl

[3] Bocklandt, R. Generating toric noncommutative crepant resolutions, J. Algebra, Volume 364 (2012), pp. 119-147 | DOI | MR | Zbl

[4] Bocklandt, R. Toric systems and mirror symmetry, Compos. Math., Volume 149 (2013) no. 11, pp. 1839-1855 | DOI | MR | Zbl

[5] Bocklandt, R. A dimer ABC, Bull. Lond. Math. Soc., Volume 48 (2016) no. 3, pp. 387-451 | DOI | MR | Zbl

[6] Bondal, A.; Orlov, D. Derived categories of coherent sheaves, Proceedings of the International Congress of Mathematicians (Beijing, 2002). Vol.D II: Invited lectures, Higher Education Press, 2002, pp. 47-56 | Zbl

[7] Bridgeland, T. Flops and derived categories, Invent. Math., Volume 147 (2002) no. 3, pp. 613-632 | DOI | MR | Zbl

[8] Bridgeland, T.; King, A.; Reid, M. The McKay correspondence as an equivalence of derived categories, J. Am. Math. Soc., Volume 14 (2001) no. 3, pp. 535-554 | DOI | MR | Zbl

[9] Broomhead, N. Dimer model and Calabi-Yau algebras, Mem. Am. Math. Soc., Volume 215 (2012) no. 1011 | MR | Zbl

[10] Bruns, W.; Gubeladze, J. Polytopes, rings and K-theory, Springer Monographs in Mathematics, Springer, 2009

[11] Buchweitz, R.-O.; Leuschke, G. J.; Bergh, M. Van den Non-commutative desingularization of determinantal varieties I, Invent. Math., Volume 182 (2010) no. 1, pp. 47-115 | DOI | MR | Zbl

[12] Burban, I.; Iyama, O.; Keller, B.; Reiten, I. Cluster tilting for one-dimensional hypersurface singularities, Adv. Math., Volume 217 (2008) no. 6, pp. 2443-2484 | DOI | MR | Zbl

[13] Cox, D. A.; Little, J. B.; Schenck, H. K. Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011 | MR | Zbl

[14] Dao, H. Remarks on non-commutative crepant resolutions of complete intersections, Adv. Math., Volume 224 (2010) no. 3, pp. 1021-1030 | DOI | MR | Zbl

[15] Dao, H.; Faber, E.; Ingalls, C. Noncommutative (Crepant) Desingularizations and the Global Spectrum of Commutative Rings, Algebr. Represent. Theory, Volume 18 (2015) no. 3, pp. 633-664 | DOI | MR | Zbl

[16] Dao, H.; Huneke, C. Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings, Am. J. Math., Volume 135 (2013) no. 2, pp. 561-578 | DOI | MR | Zbl

[17] Dao, H.; Iyama, O.; Takahashi, R.; Vial, C. Non-commutative resolutions and Grothendieck groups, J. Noncommut. Geom., Volume 9 (2015) no. 1, pp. 21-34 | DOI | MR | Zbl

[18] Dao, H.; Iyama, O.; Takahashi, R.; Wemyss, M. Gorenstein modifications and -Gorenstein rings (2016) | arXiv

[19] Duffin, R. J. Potential theory on a rhombic lattice, J. Comb. Theory, Volume 5 (1968), pp. 258-272 | DOI | MR | Zbl

[20] Grünbaum, B.; Shephard, G. C. Tilings and patterns, W. H. Freeman and Company, 1987, xii+700 pages | Zbl

[21] Gulotta, D. R. Properly ordered dimers, R-charges, and an efficient inverse algorithm, J. High Energy Phys. (2008) no. 10, 014, 31 pages | DOI | MR | Zbl

[22] Hanany, A.; Vegh, D. Quivers, tilings, branes and rhombi, J. High Energy Phys. (2007) no. 10, 029, 35 pages | DOI | MR

[23] Higashitani, A.; Nakajima, Y. Conic divisorial ideals of Hibi rings and their applications to non-commutative crepant resolutions (2017) | arXiv | Zbl

[24] Ishii, A.; Ueda, K. A note on consistency conditions on dimer models, RIMS Kôkyûroku Bessatsu, Volume B24 (2011), pp. 143-164 | Zbl

[25] Ishii, A.; Ueda, K. Dimer models and the special McKay correspondence, Geom. Topol., Volume 19 (2015), pp. 3405-3466 | DOI | MR | Zbl

[26] Iyama, O. Auslander correspondence, Adv. Math., Volume 210 (2007) no. 1, pp. 51-82 | DOI | MR | Zbl

[27] Iyama, O.; Nakajima, Y. On steady non-commutative crepant resolutions, J. Noncommut. Geom., Volume 12 (2018) no. 2, pp. 457-471 | DOI | MR | Zbl

[28] Iyama, O.; Reiten, I. Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, Am. J. Math., Volume 130 (2008) no. 4, pp. 1087-1149 | DOI | MR | Zbl

[29] Iyama, O.; Wemyss, M. On the Noncommutative Bondal-Orlov Conjecture, J. Reine Angew. Math., Volume 683 (2013), pp. 119-128 | MR | Zbl

[30] Iyama, O.; Wemyss, M. Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math., Volume 197 (2014) no. 3, pp. 521-586 | DOI | MR | Zbl

[31] Iyama, O.; Wemyss, M. Reduction of triangulated categories and maximal modification algebras for cA n singularities, J. Reine Angew. Math., Volume 738 (2018), pp. 149-202 | DOI | Zbl

[32] Kapranov, M.; Vasserot, E. Kleinian singularities, derived categories and Hall algebras, Math. Ann., Volume 316 (2000) no. 3, pp. 565-576 | DOI | MR | Zbl

[33] Kenyon, R.; Schlenker, J. M. Rhombic embeddings of planar quadgraphs, Trans. Am. Math. Soc., Volume 357 (2005) no. 9, pp. 3443-3458 | DOI

[34] Leuschke, G. J. Non-commutative crepant resolutions: scenes from categorical geometry, Combinatorics and Homology (Progress in Commutative Algebra), Volume 1, de Gruyter, 2012, pp. 293-361 | MR | Zbl

[35] Leuschke, G. J.; Wiegand, R. Cohen-Macaulay Representations, Mathematical Surveys and Monographs, 181, American Mathematical Society, 2012 | MR | Zbl

[36] Mercat, C. Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., Volume 218 (2001) no. 1, pp. 177-216 | DOI | MR | Zbl

[37] Nakajima, Y. Mutations of splitting maximal modifying modules: The case of reflexive polygons, Int. Math. Res. Not. (2017) | DOI

[38] Špenko, Š.; Van den Bergh, M. Non-commutative resolutions of quotient singularities for reductive groups, Invent. Math., Volume 210 (2017) no. 1, pp. 3-67 | DOI | MR | Zbl

[39] Stafford, J. T.; Bergh, M. Van den Noncommutative resolutions and rational singularities, Mich. Math. J., Volume 57 (2008), pp. 659-674 | DOI | MR | Zbl

[40] Ueda, K.; Yamazaki, M. A note on dimer models and McKay quivers, Commun. Math. Phys., Volume 301 (2011) no. 3, pp. 723-747 | DOI | MR | Zbl

[41] Van den Bergh, M. Non-Commutative Crepant Resolutions, The Legacy of Niels Henrik Abel, Springer, 2004, pp. 749-770 | DOI | Zbl

[42] Van den Bergh, M. Three-dimensional flops and noncommutative rings, Duke Math. J., Volume 122 (2004) no. 3, pp. 423-455 | DOI | MR | Zbl

[43] Wemyss, M. Flops and Clusters in the Homological Minimal Model Program, Invent. Math., Volume 211 (2018) no. 2, pp. 435-521 | DOI | MR | Zbl

[44] Yoshino, Y. Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, 146, Cambridge University Press, 1990 | MR | Zbl

Cité par Sources :