The weak order on integer posets
Algebraic Combinatorics, Tome 2 (2019) no. 1, pp. 1-48.

We explore lattice structures on integer binary relations (i.e. binary relations on the set {1,2,,n} for a fixed integer n) and on integer posets (i.e. partial orders on the set {1,2,,n} for a fixed integer n). We first observe that the weak order on the symmetric group naturally extends to a lattice structure on all integer binary relations. We then show that the subposet of this weak order induced by integer posets defines as well a lattice. We finally study the subposets of this weak order induced by specific families of integer posets corresponding to the elements, the intervals, and the faces of the permutahedron, the associahedron, and some recent generalizations of those.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/alco.36
Classification : 03G10, 06A07, 06B99, 52B12
Mots clés : Integer binary relations, Weak order, Lattices
Chatel, Grégory 1 ; Pilaud, Vincent 2 ; Pons, Viviane 3

1 LIGM, Univ. Paris-Est Marne-la-Vallée, 5 Boulevard Descartes, 77420 Champs-sur-Marne, France
2 CNRS & LIX, École Polytechnique, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
3 LRI, Univ. Paris-Sud, Bâtiment 650, Rue Noetzlin, 91190 Gif-sur-Yvette, France
@article{ALCO_2019__2_1_1_0,
     author = {Chatel, Gr\'egory and Pilaud, Vincent and Pons, Viviane},
     title = {The weak order on integer posets},
     journal = {Algebraic Combinatorics},
     pages = {1--48},
     publisher = {MathOA foundation},
     volume = {2},
     number = {1},
     year = {2019},
     doi = {10.5802/alco.36},
     mrnumber = {3912167},
     zbl = {07024218},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/alco.36/}
}
TY  - JOUR
AU  - Chatel, Grégory
AU  - Pilaud, Vincent
AU  - Pons, Viviane
TI  - The weak order on integer posets
JO  - Algebraic Combinatorics
PY  - 2019
SP  - 1
EP  - 48
VL  - 2
IS  - 1
PB  - MathOA foundation
UR  - http://www.numdam.org/articles/10.5802/alco.36/
DO  - 10.5802/alco.36
LA  - en
ID  - ALCO_2019__2_1_1_0
ER  - 
%0 Journal Article
%A Chatel, Grégory
%A Pilaud, Vincent
%A Pons, Viviane
%T The weak order on integer posets
%J Algebraic Combinatorics
%D 2019
%P 1-48
%V 2
%N 1
%I MathOA foundation
%U http://www.numdam.org/articles/10.5802/alco.36/
%R 10.5802/alco.36
%G en
%F ALCO_2019__2_1_1_0
Chatel, Grégory; Pilaud, Vincent; Pons, Viviane. The weak order on integer posets. Algebraic Combinatorics, Tome 2 (2019) no. 1, pp. 1-48. doi : 10.5802/alco.36. http://www.numdam.org/articles/10.5802/alco.36/

[1] Björner, Anders; Wachs, Michelle L. Permutation statistics and linear extensions of posets, J. Comb. Theory, Ser. A, Volume 58 (1991) no. 1, pp. 85-114 | DOI | MR | Zbl

[2] Chatel, Grégory; Pilaud, Vincent Cambrian Hopf Algebras, Adv. Math., Volume 311 (2017), pp. 598-633 | DOI | MR | Zbl

[3] Châtel, Grégory; Pons, Viviane Counting smaller elements in the Tamari and m-Tamari lattices, J. Comb. Theory, Ser. A, Volume 134 (2015), pp. 58-97 | DOI | MR | Zbl

[4] Dermenjian, Aram; Hohlweg, Christophe; Pilaud, Vincent The facial weak order and its lattice quotients, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 1469-1507 | DOI | MR | Zbl

[5] Hohlweg, Christophe; Lange, Carsten Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., Volume 37 (2007) no. 4, pp. 517-543 | DOI | MR | Zbl

[6] Kassel, Christian; Lascoux, Alain; Reutenauer, Christophe The singular locus of a Schubert variety, J. Algebra, Volume 269 (2003) no. 1, pp. 74-108 | DOI | MR | Zbl

[7] Krob, Daniel; Latapy, Matthieu; Novelli, Jean-Christophe; Phan, Ha-Duong; Schwer, Sylviane Pseudo-Permutations I: First Combinatorial and Lattice Properties (2001) http://www-igm.univ-mlv.fr/~novelli/ARTICLES/pp1.ps 13th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2001)

[8] Lange, Carsten; Pilaud, Vincent Associahedra via spines, Combinatorica, Volume 38 (2018) no. 2, pp. 443-486 | DOI | MR | Zbl

[9] Loday, Jean-Louis Realization of the Stasheff polytope, Arch. Math., Volume 83 (2004) no. 3, pp. 267-278 | MR | Zbl

[10] Associahedra, Tamari Lattices and Related Structures. Tamari Memorial Festschrift (Müller-Hoissen, Folkert; Pallo, Jean Marcel; Stasheff, Jim, eds.), Progress in Mathematics, 299, Birkhäuser, 2012, xx+433 pages | Zbl

[11] Novelli, Jean-Christophe; Thibon, Jean-Yves Polynomial realizations of some trialgebras (2006) 18th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2006), https://arxiv.org/abs/math/0605061

[12] Palacios, Patricia; Ronco, María O. Weak Bruhat order on the set of faces of the permutohedron and the associahedron, J. Algebra, Volume 299 (2006) no. 2, pp. 648-678 | DOI | MR | Zbl

[13] Pilaud, Vincent; Pons, Viviane IntegerPosets, 2018 (Research code. https://github.com/VivianePons/public-notebooks/tree/master/IntegerPosets)

[14] Pilaud, Vincent; Pons, Viviane Permutrees, Algebr. Comb., Volume 1 (2018) no. 2, pp. 173-224 | MR | Zbl

[15] Reading, Nathan Lattice congruences of the weak order, Order, Volume 21 (2004) no. 4, pp. 315-344 | DOI | MR | Zbl

[16] Reading, Nathan Cambrian lattices, Adv. Math., Volume 205 (2006) no. 2, pp. 313-353 | DOI | MR | Zbl

[17] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, 2010 (http://oeis.org) | Zbl

[18] The Sage-Combinat community Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2016 (http://wiki.sagemath.org/combinat)

[19] The Sage Developers SageMath, the Sage Mathematics Software System, 2016 (http://www.sagemath.org/)

Cité par Sources :