We propose a strengthening of the conclusion in Turán’s (3,4)-conjecture in terms of algebraic shifting, and show that its analogue for graphs does hold. In another direction, we generalize the Mantel–Turán theorem by weakening its assumption: for any graph
Accepté le :
Publié le :
DOI : 10.5802/alco.30
@article{ALCO_2019__2_3_367_0, author = {Kalai, Gil and Nevo, Eran}, title = {Tur\'an, involution and shifting}, journal = {Algebraic Combinatorics}, pages = {367--378}, publisher = {MathOA foundation}, volume = {2}, number = {3}, year = {2019}, doi = {10.5802/alco.30}, zbl = {07066880}, language = {en}, url = {https://www.numdam.org/articles/10.5802/alco.30/} }
Kalai, Gil; Nevo, Eran. Turán, involution and shifting. Algebraic Combinatorics, Tome 2 (2019) no. 3, pp. 367-378. doi : 10.5802/alco.30. https://www.numdam.org/articles/10.5802/alco.30/
[1] Shifting operations and graded Betti numbers, J. Algebr. Comb., Volume 12 (2000) no. 3, pp. 207-222 | DOI | MR | Zbl
[2] Reverse lexicographic and lexicographic shifting, J. Algebr. Comb., Volume 23 (2006) no. 2, pp. 107-123 | DOI | MR | Zbl
[3] An extended Euler-Poincaré theorem, Acta Math., Volume 161 (1988) no. 3-4, pp. 279-303 | DOI | MR | Zbl
[4] On an open problem of Paul Turán concerning
[5] An upper bound for the Turán number
[6] The current status of Turán’s problem on hypergraphs, Extremal problems for finite sets (Visegrád, 1991) (Bolyai Society Mathematical Studies), Volume 3, János Bolyai Mathematical Society, 1994, pp. 187-197 | MR | Zbl
[7] Intersection theorems for systems of finite sets, Q. J. Math., Oxf. II. Ser., Volume 12 (1961), pp. 313-320 | DOI | MR | Zbl
[8] A method for constructing
[9] The shifting technique in extremal set theory, Surveys in combinatorics 1987 (New Cross, 1987) (London Mathematical Society Lecture Note Series), Volume 123, Cambridge University Press, 1987, pp. 81-110 | MR | Zbl
[10] More constructions for Turán’s
[11] Characterization of
[12] A new approach to Turán’s conjecture, Graphs Comb., Volume 1 (1985), pp. 107-109 | DOI | Zbl
[13] Symmetric matroids, J. Comb. Theory, Ser. B, Volume 50 (1990) no. 1, pp. 54-64 | DOI | MR
[14] Algebraic shifting, Computational commutative algebra and combinatorics (Osaka, 1999) (Advanced Studies in Pure Mathematics), Volume 33, Mathematical Society of Japan, 2002, pp. 121-163 | DOI | MR | Zbl
[15] Hypergraph Turán problems, Surveys in combinatorics 2011 (London Mathematical Society Lecture Note Series), Volume 392, Cambridge University Press, 2011, pp. 83-139 | DOI | MR | Zbl
[16] Maximal number of subsets of a finite set no
[17] A class of constructions for Turán’s
[18] Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff), Wiskundige Opgaven, Volume 10 (1907), pp. 60-61 | Zbl
[19] Generic initial ideals and exterior algebraic shifting of the join of simplicial complexes, Ark. Mat., Volume 45 (2007) no. 2, pp. 327-336 | DOI | MR | Zbl
[20] Algebraic shifting and graded Betti numbers, Trans. Am. Math. Soc., Volume 361 (2009) no. 4, pp. 1853-1865 | DOI | MR | Zbl
[21] Algebraic shifting and basic constructions on simplicial complexes, J. Algebr. Comb., Volume 22 (2005) no. 4, pp. 411-433 | DOI | MR | Zbl
[22] The minimum size of 3-graphs without a 4-set spanning no or exactly three edges, Eur. J. Comb., Volume 32 (2011) no. 7, pp. 1142-1155 | DOI | MR | Zbl
[23] On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math., Volume 24 (2010) no. 3, pp. 946-963 | DOI | MR | Zbl
[24] Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok, Volume 48 (1941), pp. 436-452 | MR | Zbl
[25] Research problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 6 (1961), pp. 417-423 | DOI | MR
Cité par Sources :