Let be a -generated finite group. The generating graph is the graph whose vertices are the elements of and where two vertices and are adjacent if This graph encodes the combinatorial structure of the distribution of generating pairs across In this paper we study some graph theoretic properties of , with particular emphasis on those properties that can be formulated in terms of forbidden induced subgraphs. In particular we investigate when the generating graph is a cograph (giving a complete description when is soluble) and when it is perfect (giving a complete description when is nilpotent and proving, among other things, that and are perfect if and only if ). Finally we prove that for a finite group , the properties that is split, chordal or -free are equivalent.
Révisé le :
Accepté le :
Publié le :
Mots clés : cographs, generating graph, perfect graphs
@article{ALCO_2022__5_5_925_0, author = {Lucchini, Andrea and Nemmi, Daniele}, title = {Forbidden subgraphs in generating graphs of finite groups}, journal = {Algebraic Combinatorics}, pages = {925--946}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {5}, year = {2022}, doi = {10.5802/alco.229}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.229/} }
TY - JOUR AU - Lucchini, Andrea AU - Nemmi, Daniele TI - Forbidden subgraphs in generating graphs of finite groups JO - Algebraic Combinatorics PY - 2022 SP - 925 EP - 946 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - http://www.numdam.org/articles/10.5802/alco.229/ DO - 10.5802/alco.229 LA - en ID - ALCO_2022__5_5_925_0 ER -
%0 Journal Article %A Lucchini, Andrea %A Nemmi, Daniele %T Forbidden subgraphs in generating graphs of finite groups %J Algebraic Combinatorics %D 2022 %P 925-946 %V 5 %N 5 %I The Combinatorics Consortium %U http://www.numdam.org/articles/10.5802/alco.229/ %R 10.5802/alco.229 %G en %F ALCO_2022__5_5_925_0
Lucchini, Andrea; Nemmi, Daniele. Forbidden subgraphs in generating graphs of finite groups. Algebraic Combinatorics, Tome 5 (2022) no. 5, pp. 925-946. doi : 10.5802/alco.229. http://www.numdam.org/articles/10.5802/alco.229/
[1] The maximal subgroups of the low-dimensional finite classical groups. With a foreword by Martin Liebeck, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013, xiv+438 pages | DOI
[2] Probabilistic generation of finite simple groups, II, J. Algebra, Volume 320 (2008) no. 2, pp. 443-494 | DOI | MR | Zbl
[3] Hamiltonian cycles in the generating graphs of finite groups, Bull. Lond. Math. Soc., Volume 42 (2010) no. 4, pp. 621-633 | DOI | MR
[4] The spread of a finite group, Ann. of Math., Volume 193 (2021) no. 2, pp. 619-687 | MR | Zbl
[5] Graphs defined on groups, Int. J. Group Theory, Volume 11 (2022) no. 2, pp. 53-107 | MR | Zbl
[6] The strong perfect graph theorem, Ann. of Math. (2), Volume 164 (2006) no. 1, pp. 51-229 | DOI | MR | Zbl
[7] The generating graph of finite soluble groups, Israel J. Math., Volume 198 (2013) no. 1, pp. 63-74 | DOI | MR | Zbl
[8] Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996, xii+346 pages | DOI | MR
[9] Split graphs, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977) (1977), p. 311-315. Congressus Numerantium, No. XIX | MR | Zbl
[10] GAP – Groups, Algorithms, and Programming, Version 4.11.1 (2021) https://www.gap-system.org
[11] Zu einem von B. H. und H. Neumann gestellten Problem, Math. Nachr., Volume 14 (1955) no. 4-6, pp. 249-252 | DOI | MR | Zbl
[12] Die Eulersche funktion endlicher auflösbarer gruppen, Illinois J. Math., Volume 3 (1959) no. 4, pp. 469-476 | Zbl
[13] Probabilistic generation of finite simple groups, J. Algebra, Volume 234 (2000) no. 2, pp. 743-792 | DOI | MR | Zbl
[14] Connectivity of generating graphs of nilpotent groups, Algebr. Combin., Volume 3 (2020) no. 5, pp. 1183-1195 | DOI | Numdam | MR | Zbl
[15] Primitive permutation groups containing a cycle, Bull. Aust. Math. Soc., Volume 89 (2014) no. 1, pp. 159-165 | DOI | MR | Zbl
[16] The diameter of the generating graph of a finite soluble group, J. Algebra, Volume 492 (2017), pp. 28-43 | DOI | MR | Zbl
[17] The Möbius function of the small Ree groups, Australas. J. Combin., Volume 66 (2016), pp. 142-176 | MR | Zbl
[18] Perfect product graphs, Discrete Math., Volume 20 (1977/78) no. 2, pp. 177-186 | DOI | MR | Zbl
[19] A course in the theory of groups, Graduate Texts in Mathematics, 80, Springer-Verlag, New York, 1996, xviii+499 pages | DOI | MR
[20] Intersection graphs of subgroups of finite groups, Czechoslovak Math. J., Volume 60 (2010) no. 4, pp. 945-950 | DOI | MR | Zbl
Cité par Sources :