The paper compares (and reproves) the alcove walk and the nonattacking fillings formulas for type Macdonald polynomials which were given in [10], [1] and [18]. The “compression” relating the two formulas in this paper is the same as that of Lenart [13]. We have reformulated it so that it holds without conditions and so that the proofs of the alcove walks formula and the nonattacking fillings formula are parallel. This reformulation highlights the role of the double affine Hecke algebra and Cherednik’s intertwiners. An exposition of the type double affine braid group, double affine Hecke algebra, and all definitions and proofs regarding Macdonald polynomials are provided to make this paper self contained.
Révisé le :
Accepté le :
Publié le :
Mots clés : Macdonald polynomials, affine Hecke algebras, tableaux
@article{ALCO_2022__5_5_849_0, author = {Guo, Weiying and Ram, Arun}, title = {Comparing formulas for type $GL_n$ {Macdonald} polynomials}, journal = {Algebraic Combinatorics}, pages = {849--883}, publisher = {The Combinatorics Consortium}, volume = {5}, number = {5}, year = {2022}, doi = {10.5802/alco.227}, language = {en}, url = {http://www.numdam.org/articles/10.5802/alco.227/} }
TY - JOUR AU - Guo, Weiying AU - Ram, Arun TI - Comparing formulas for type $GL_n$ Macdonald polynomials JO - Algebraic Combinatorics PY - 2022 SP - 849 EP - 883 VL - 5 IS - 5 PB - The Combinatorics Consortium UR - http://www.numdam.org/articles/10.5802/alco.227/ DO - 10.5802/alco.227 LA - en ID - ALCO_2022__5_5_849_0 ER -
Guo, Weiying; Ram, Arun. Comparing formulas for type $GL_n$ Macdonald polynomials. Algebraic Combinatorics, Tome 5 (2022) no. 5, pp. 849-883. doi : 10.5802/alco.227. http://www.numdam.org/articles/10.5802/alco.227/
[1] Non-symmetric Macdonald polynomials and Demazure-Lusztig operators, Sém. Lothar. Combin., Volume 76 ([2016-2019]), B76d, 27 pages | MR
[2] Nonsymmetric Macdonald polynomials via integrable vertex models (2019) | arXiv
[3] Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, xii+300 pages (Translated from the 1968 French original by Andrew Pressley) | DOI | MR
[4] Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices (1995) no. 10, pp. 483-515 | DOI | MR | Zbl
[5] Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319, Cambridge University Press, Cambridge, 2005, xii+434 pages | DOI | MR
[6] From multiline queues to Macdonald polynomials via the exclusion process, Sém. Lothar. Combin., Volume 82B (2020), 97, 12 pages | MR | Zbl
[7] Generalized Weyl modules and nonsymmetric -Whittaker functions, Adv. Math., Volume 330 (2018), pp. 997-1033 | DOI | MR | Zbl
[8] Row-strict Quasisymmetric Schur Functions, Characterizations of Demazure Atoms, and Permuted Basement Nonsymmetric Macdonald Polynomials, ProQuest LLC, Ann Arbor, MI, 2011, 90 pages Thesis (Ph.D.)–University of California, Davis | MR
[9] Comparing formulas for type Macdonald polynomials – Supplement, Algebr. Comb., Volume 5 (2022) no. 5, pp. 885-923 | arXiv
[10] A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., Volume 130 (2008) no. 2, pp. 359-383 | DOI | MR | Zbl
[11] Integrality of two variable Kostka functions, J. Reine Angew. Math., Volume 482 (1997), pp. 177-189 | DOI | MR | Zbl
[12] A recursion and a combinatorial formula for Jack polynomials, Invent. Math., Volume 128 (1997) no. 1, pp. 9-22 | DOI | MR | Zbl
[13] On combinatorial formulas for Macdonald polynomials, Adv. Math., Volume 220 (2009) no. 1, pp. 324-340 | DOI | MR | Zbl
[14] Symmetric functions and Hall polynomials. With contributions by A. Zelevinsky, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages | MR
[15] Affine Hecke algebras and orthogonal polynomials, Astérisque (1996) no. 237, pp. Exp. No. 797, 4, 189-207 (Séminaire Bourbaki, Vol. 1994/95) | Numdam | MR | Zbl
[16] Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003, x+175 pages | DOI | MR
[17] Affine Hecke algebras and generalized standard Young tableaux, J. Algebra, Volume 260 (2003) no. 1, pp. 367-415 (Special issue celebrating the 80th birthday of Robert Steinberg) | DOI | MR | Zbl
[18] A combinatorial formula for Macdonald polynomials, Adv. Math., Volume 226 (2011) no. 1, pp. 309-331 | DOI | MR | Zbl
[19] Interpolation, integrality, and a generalization of Macdonald’s polynomials, Internat. Math. Res. Notices (1996) no. 10, pp. 457-471 | DOI | MR | Zbl
Cité par Sources :