Étant donné un groupe localement compact et séparé, nous étudions les fonctions de qui induisent des convoluteurs complètement continus de dans . Dans le cas d’un groupe métrisable nous obtenons une description complète de ces fonctions.
For a locally compact Hausdorff group we investigate what functions in give rise to completely continuous multipliers from into . In the case of a metrizable group we obtain a complete description of such functions. In particular, for compact all in induce completely continuous .
@article{AIF_1984__34_2_137_0, author = {Crombez, G. and Govaerts, Willy}, title = {Completely continuous multipliers from $L_1(G)$ into $L_\infty (G)$}, journal = {Annales de l'Institut Fourier}, pages = {137--154}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, number = {2}, year = {1984}, doi = {10.5802/aif.968}, mrnumber = {86b:43003}, zbl = {0518.42009}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.968/} }
TY - JOUR AU - Crombez, G. AU - Govaerts, Willy TI - Completely continuous multipliers from $L_1(G)$ into $L_\infty (G)$ JO - Annales de l'Institut Fourier PY - 1984 SP - 137 EP - 154 VL - 34 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.968/ DO - 10.5802/aif.968 LA - en ID - AIF_1984__34_2_137_0 ER -
%0 Journal Article %A Crombez, G. %A Govaerts, Willy %T Completely continuous multipliers from $L_1(G)$ into $L_\infty (G)$ %J Annales de l'Institut Fourier %D 1984 %P 137-154 %V 34 %N 2 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.968/ %R 10.5802/aif.968 %G en %F AIF_1984__34_2_137_0
Crombez, G.; Govaerts, Willy. Completely continuous multipliers from $L_1(G)$ into $L_\infty (G)$. Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 137-154. doi : 10.5802/aif.968. http://www.numdam.org/articles/10.5802/aif.968/
[1] Weakly compact convolution operators in L1(G), Simon Stevin, 52 (1978), 65-72. | MR | Zbl
and ,[2] Towards a classification of convolution-type operators from l1 to l∞, Canad. Math. Bull., 23 (1980), 413-419. | MR | Zbl
and ,[3] Vector measures, Math. Surveys n° 15, Amer. Math. Soc., Providence, R.I., 1977. | MR | Zbl
and ,[4] Linear operators, part I, New-York, Interscience, 1958. | MR | Zbl
and ,[5] Functional analysis, New-York, Holt, Rinehart and Winston, 1965. | MR | Zbl
,[6] Generalizations of weakly compact operators, Trans. Amer. Math. Soc., 132 (1968), 377-386. | MR | Zbl
,[7] Abstract harmonic analysis, I, Berlin, Springer, 1963.
and ,[8] On strictly singular and strictly cosingular operators, II, Bull. Acad. Polon. Sci., Sér. Sc. Math. Astronom. Phys., 13 (1965), 37-41. | MR | Zbl
,[9] Operator ideals, Amsterdam, North-Holland Publ. Comp., 1980. | MR | Zbl
,[10] Characterizations of B(G) and B(G)∩AP(G) for locally compact groups, Proc. Amer. Math. Soc., 58 (1976), 151-157. | MR | Zbl
,Cité par Sources :