An extension of deLeeuw’s theorem to the n-dimensional rotation group
Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 111-135.

On étudie un processus d’approximation des représentations du groupe M(n) par celles du groupe SO(n+1). Comme conséquence on établit une version d’un théorème de DeLeeuw pour les multiplicateurs de Fourier de Lp relatif aux “restrictions” d’une fonction sur le dual de M(n) au dual de SO(n+1).

We study a method of approximating representations of the group M(n) by those of the group SO(n+1). As a consequence we establish a version of a theorem of DeLeeuw for Fourier multipliers of Lp that applies to the “restrictions” of a function on the dual of M(n) to the dual of SO(n+1).

@article{AIF_1984__34_2_111_0,
     author = {Dooley, Anthony H. and Gaudry, Garth I.},
     title = {An extension of {deLeeuw{\textquoteright}s} theorem to the $n$-dimensional rotation group},
     journal = {Annales de l'Institut Fourier},
     pages = {111--135},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     number = {2},
     year = {1984},
     doi = {10.5802/aif.967},
     mrnumber = {86a:43002},
     zbl = {0523.43002},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.967/}
}
TY  - JOUR
AU  - Dooley, Anthony H.
AU  - Gaudry, Garth I.
TI  - An extension of deLeeuw’s theorem to the $n$-dimensional rotation group
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 111
EP  - 135
VL  - 34
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.967/
DO  - 10.5802/aif.967
LA  - en
ID  - AIF_1984__34_2_111_0
ER  - 
%0 Journal Article
%A Dooley, Anthony H.
%A Gaudry, Garth I.
%T An extension of deLeeuw’s theorem to the $n$-dimensional rotation group
%J Annales de l'Institut Fourier
%D 1984
%P 111-135
%V 34
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.967/
%R 10.5802/aif.967
%G en
%F AIF_1984__34_2_111_0
Dooley, Anthony H.; Gaudry, Garth I. An extension of deLeeuw’s theorem to the $n$-dimensional rotation group. Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 111-135. doi : 10.5802/aif.967. https://www.numdam.org/articles/10.5802/aif.967/

[1] J.-L. Clerc, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, Grenoble, 24, 1 (1974), 149-172. | Numdam | MR | Zbl

[2] A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations. To appear, Math. Proc. Camb. Phil. Soc. | Zbl

[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.

[4] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. II, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1970.

[5] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9. Springer-Verlag, New York-Berlin, 1972. | MR | Zbl

[6] A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. | Numdam | MR | Zbl

[7] K. De Leeuw, On Lp multipliers, Ann. of Math., (2), 81 (1965), 364-379. | MR | Zbl

[8] R. L. Rubin, Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math., LXII (1978), 125-141. | MR | Zbl

[9] J. P. Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York, 1966. | MR | Zbl

Cité par Sources :