On the boundary limits of harmonic functions with gradient in L p
Annales de l'Institut Fourier, Tome 34 (1984) no. 1, pp. 99-109.

Dans cet article on étudie l’allure tangentielle à la frontière des fonctions harmoniques dans la classe de Sobolev W 1 p (R + n ), où R + n est le demi-espace de R n . On donne une généralisation du résultat récent de Cruzeiro (C.R.A.S., Paris, 294 (1982), 71–74), dans le cas p=n. Ici on utilise la représentation intégrale des fonctions de Beppo-Levi de Ohtsuka (Lecture Notes, Hiroshima Univ., 1973), et notre méthode est différente de celle de Nagel, Rudin et Shapiro (Ann. of Math., 116 (1982), 331–360).

This paper deals with tangential boundary behaviors of harmonic functions with gradient in Lebesgue classes. Our aim is to extend a recent result of Cruzeiro (C.R.A.S., Paris, 294 (1982), 71–74), concerning tangential boundary limits of harmonic functions with gradient in L n (R + n ), R + n denoting the upper half space of the n-dimensional euclidean space R n . Our method used here is different from that of Nagel, Rudin and Shapiro (Ann. of Math., 116 (1982), 331–360); in fact, we use the integral representation of precise functions given by Ohtsuka (Lecture Notes, Hiroshima Univ., 1973).

@article{AIF_1984__34_1_99_0,
     author = {Mizuta, Yoshihiro},
     title = {On the boundary limits of harmonic functions with gradient in $L^p$},
     journal = {Annales de l'Institut Fourier},
     pages = {99--109},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {34},
     number = {1},
     year = {1984},
     doi = {10.5802/aif.952},
     mrnumber = {85f:31009},
     zbl = {0522.31009},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.952/}
}
TY  - JOUR
AU  - Mizuta, Yoshihiro
TI  - On the boundary limits of harmonic functions with gradient in $L^p$
JO  - Annales de l'Institut Fourier
PY  - 1984
SP  - 99
EP  - 109
VL  - 34
IS  - 1
PB  - Imprimerie Louis-Jean
PP  - Gap
UR  - http://www.numdam.org/articles/10.5802/aif.952/
DO  - 10.5802/aif.952
LA  - en
ID  - AIF_1984__34_1_99_0
ER  - 
%0 Journal Article
%A Mizuta, Yoshihiro
%T On the boundary limits of harmonic functions with gradient in $L^p$
%J Annales de l'Institut Fourier
%D 1984
%P 99-109
%V 34
%N 1
%I Imprimerie Louis-Jean
%C Gap
%U http://www.numdam.org/articles/10.5802/aif.952/
%R 10.5802/aif.952
%G en
%F AIF_1984__34_1_99_0
Mizuta, Yoshihiro. On the boundary limits of harmonic functions with gradient in $L^p$. Annales de l'Institut Fourier, Tome 34 (1984) no. 1, pp. 99-109. doi : 10.5802/aif.952. http://www.numdam.org/articles/10.5802/aif.952/

[1] L. Carleson, Selected Problems on exceptional sets, Van Nostrand, Princeton, 1967. | MR | Zbl

[2] A.B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans Rd de la classe de Sobolev Wd1, C.R.A.S., Paris, 294 (1982), 71-74. | MR | Zbl

[3] N.G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl

[4] N.G. Meyers, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166. | MR | Zbl

[5] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of Rn, Hiroshima Math. J., 6 (1976), 61-72. | MR | Zbl

[6] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J., 9 (1979), 717-745. | MR | Zbl

[7] A. Nagel, W. Rudin and J.H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360. | MR | Zbl

[8] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.

[9] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970. | MR | Zbl

[10] H. Wallin, On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1965), 510-525. | MR | Zbl

[11] J.-M. G. Wu, Lp-densities and boundary behaviors of Green potentials, Indiana Univ. Math. J., 28 (1979), 895-911. | Zbl

[12] W.P. Ziemer, Extremal length as a capacity, Michigan Math. J., 17 (1970), 117-128. | MR | Zbl

Cité par Sources :