Pour toute variété complexe à dimensions qui est connexe, paracompacte et Hausdorff, il y a une submersion holomorphe de la boule unité de sur qui est finie.
Every -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in under a finite holomorphic map that is locally biholomorphic.
@article{AIF_1982__32_2_23_0, author = {Fornaess, John Erik and Stout, Edgar Lee}, title = {Regular holomorphic images of balls}, journal = {Annales de l'Institut Fourier}, pages = {23--36}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {2}, year = {1982}, doi = {10.5802/aif.871}, mrnumber = {84h:32026}, zbl = {0452.32008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.871/} }
TY - JOUR AU - Fornaess, John Erik AU - Stout, Edgar Lee TI - Regular holomorphic images of balls JO - Annales de l'Institut Fourier PY - 1982 SP - 23 EP - 36 VL - 32 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.871/ DO - 10.5802/aif.871 LA - en ID - AIF_1982__32_2_23_0 ER -
Fornaess, John Erik; Stout, Edgar Lee. Regular holomorphic images of balls. Annales de l'Institut Fourier, Tome 32 (1982) no. 2, pp. 23-36. doi : 10.5802/aif.871. http://www.numdam.org/articles/10.5802/aif.871/
[1] Mapping a polydisc onto a complex manifold, Senior Thesis, Princeton University, 1976 (Princeton University Library).
,[2] Spreading polydiscs on complex manifolds, Amer. J. Math., 99 (1977), 933-960. | MR | Zbl
and ,[3] Polydiscs in complex manifolds, Math. Ann., 227 (1977), 145-153. | MR | Zbl
and ,[4] Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970. | MR | Zbl
,[5] Theory of Functions of a Complex Variable, vol. III, Prentice-Hall, Englewood Cliffs, 1967. | MR | Zbl
,[6] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | MR | Zbl
,Cité par Sources :