A theorem on weak type estimates for Riesz transforms and martingale transforms
Annales de l'Institut Fourier, Tome 31 (1981) no. 1, pp. 257-264.

Les transformées de Riesz d’une mesure positive singulière νM(Rn) satisfont à l’inégalité faible

mj=1n|Rjν|>λCνλ,λ>0

m est la mesure de Lebesgue et C une constante positive dépendant de n.

The Riesz transforms of a positive singular measure νM(Rn) satisfy the weak type inequality

mj=1n|Rjν|>λCνλ,λ>0

where m denotes Lebesgue measure and C is a positive constant only depending on m.

@article{AIF_1981__31_1_257_0,
     author = {Varopoulos, Nicolas Th.},
     title = {A theorem on weak type estimates for {Riesz} transforms and martingale transforms},
     journal = {Annales de l'Institut Fourier},
     pages = {257--264},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {31},
     number = {1},
     year = {1981},
     doi = {10.5802/aif.826},
     mrnumber = {84e:60070},
     zbl = {0437.60003},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.826/}
}
TY  - JOUR
AU  - Varopoulos, Nicolas Th.
TI  - A theorem on weak type estimates for Riesz transforms and martingale transforms
JO  - Annales de l'Institut Fourier
PY  - 1981
SP  - 257
EP  - 264
VL  - 31
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.826/
DO  - 10.5802/aif.826
LA  - en
ID  - AIF_1981__31_1_257_0
ER  - 
%0 Journal Article
%A Varopoulos, Nicolas Th.
%T A theorem on weak type estimates for Riesz transforms and martingale transforms
%J Annales de l'Institut Fourier
%D 1981
%P 257-264
%V 31
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.826/
%R 10.5802/aif.826
%G en
%F AIF_1981__31_1_257_0
Varopoulos, Nicolas Th. A theorem on weak type estimates for Riesz transforms and martingale transforms. Annales de l'Institut Fourier, Tome 31 (1981) no. 1, pp. 257-264. doi : 10.5802/aif.826. https://www.numdam.org/articles/10.5802/aif.826/

[1] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University press (1970). | MR | Zbl

[2] Cereteli, Mat. Zametki, t. 22 No. 5 (1977).

[3] R.F. Gundy, On a Theorem of F. and M. Riesz and an Identity of A. Wald. (preprint). | Zbl

[4] L. Loomis, A note on the Hilbert transform, B.A.M.S., 52 (1946), 1082-1086. | MR | Zbl

[5] K. Murali Rao, Quasi-Martingales, Math. Scand., 24 (1969), 79-92. | EuDML | MR | Zbl

[6] S. Janson, Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. | EuDML | MR | Zbl

  • Junge, M.; Mei, T. BMO spaces associated with semigroups of operators, Mathematische Annalen, Volume 352 (2012) no. 3, p. 691 | DOI:10.1007/s00208-011-0657-0
  • Janakiraman, Prabhu Limiting weak-type behavior for the Riesz transform and maximal operator when λ → ∞, Michigan Mathematical Journal, Volume 55 (2007) no. 1 | DOI:10.1307/mmj/1177681984
  • Kislyakov, S. V. Martingale transforms and uniformly convergent orthogonal series, Journal of Soviet Mathematics, Volume 37 (1987) no. 5, p. 1276 | DOI:10.1007/bf01327037
  • Madan, Shobha; Sjögren, Peter Poisson integrals of absolutely continuous and other measures, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 95 (1984) no. 1, p. 141 | DOI:10.1017/s0305004100061387

Cité par 4 documents. Sources : Crossref