Toute mesure conique sur un espace faible complet est représentée comme l’intégration par rapport à une mesure complètement additive sur la -algèbre cylindrique. Le lien entre les mesures coniques sur et les mesures abstraites à valeurs dans donne des conditions suffisantes pour que la mesure représentante soit finie.
Every conical measure on a weak complete space is represented as integration with respect to a -additive measure on the cylindrical -algebra in . The connection between conical measures on and -valued measures gives then some sufficient conditions for the representing measure to be finite.
@article{AIF_1977__27_1_83_0, author = {Kluv\'anek, Igor}, title = {Conical measures and vector measures}, journal = {Annales de l'Institut Fourier}, pages = {83--105}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {1}, year = {1977}, doi = {10.5802/aif.643}, mrnumber = {57 #9936}, zbl = {0311.28008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.643/} }
Kluvánek, Igor. Conical measures and vector measures. Annales de l'Institut Fourier, Tome 27 (1977) no. 1, pp. 83-105. doi : 10.5802/aif.643. http://www.numdam.org/articles/10.5802/aif.643/
[1] On exposed points of the range of a vector measure, Vector and operator valued measures and applications (Proc. Sympos. Snowbird Resort, Alta, Utah ; 1972), p. 7-22. Academic Press, New York 1973. | Zbl
,[2] Weak compactness and vector measures, Canad. J. Math., 7 (1955), 289-305. | MR | Zbl
, and ,[3] Mesures coniques, affines et cylindriques, Symposia Mathematica, vol. II (INDAM, Roma, 1968) p. 145-182. Academic Press, London 1969. | Zbl
,[4] Lectures on Analysis, Edit. J. Marsden, T. Lance and S. Gelbart, W.A. Benjamin Inc. New York — Amsterdam 1969. | Zbl
,[5] The range of a vector-valued measure, Math. Systems Theory, 7 (1973), 44-54. | MR | Zbl
,[6] The extension and closure of vector measure, Vector and operator valued measures and applications (Proc. Sympos. Snowbird Resort, Alta, Utah ; 1972), p. 175-190. Academic Press, New York 1973. | Zbl
,[7] Characterization of the closed convex hull of the range of a vector-valued measure, J. Functional Analysis, 21 (1976), 316-329. | MR | Zbl
,[8] Vector measures and control systems, North Holland Publishing Co. Amsterdam 1975.
, and ,[9] Theorem of Bartle, Dunford and Schwartz concerning vector measures, Mat. Zametki, 7 (1970), 247-254 (English translation Math. Notes, 7 (1970), 147-151). | Zbl
,[10] Equivalence of measure spaces, Amer. J. Math., 73 (1951), 275-313. | MR | Zbl
,[11] Extension and decomposition of vector measures, J. London Math., Soc., (2), 3 (1971), 672-676. | Zbl
,Cité par Sources :