En exprimant la longueur de diffusion (scattering length) comme limite d’une intégrale de Wiener nous mettons en évidence la liaison intime entre cette longueur et la capacité électrostatique.
An expression in terms of the Wiener integral for the “scattering length” is given and used to discuss the relation between this quantity and electrostatic capacity.
@article{AIF_1975__25_3-4_317_0, author = {Kac, M. and Luttinger, J. M.}, title = {Scattering length and capacity}, journal = {Annales de l'Institut Fourier}, pages = {317--321}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {3-4}, year = {1975}, doi = {10.5802/aif.586}, mrnumber = {53 #5902}, zbl = {0303.28011}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.586/} }
TY - JOUR AU - Kac, M. AU - Luttinger, J. M. TI - Scattering length and capacity JO - Annales de l'Institut Fourier PY - 1975 SP - 317 EP - 321 VL - 25 IS - 3-4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.586/ DO - 10.5802/aif.586 LA - en ID - AIF_1975__25_3-4_317_0 ER -
Kac, M.; Luttinger, J. M. Scattering length and capacity. Annales de l'Institut Fourier, Tome 25 (1975) no. 3-4, pp. 317-321. doi : 10.5802/aif.586. http://www.numdam.org/articles/10.5802/aif.586/
[1] Aspects Probabilistes de la Théorie du Potentiel, Les Presses de l'Université de Montréal, 1970. | MR | Zbl
,[2] Electrostatic Capacity, Heat Flow, and Brownian Motion, Z. für Wahrsch., 3 (1965-1966), 110-121. | Zbl
,[3] Hitting Probabilities for Brownian Motion, J. Math. and Phys., 44 (1965), 177-181.
,Cité par Sources :