À une action au sens du titre, nous attachons une collection des nombres de rotation. Si l’un des nombres est suffisamment irrationnel, alors l’action est conjuguée (au sens d’une action) soit à une action linéaire sur un tore, soit à une action sur un fibré principal sur de fibre avec les orbites isomorphes à .
For actions as in the title we associate a collection of rotation numbers. If one of them is sufficiently irrational then the action is conjugate (as an action) to either a linear action on a torus or to an action on a principal bundle over with orbits.
@article{AIF_1974__24_4_213_0, author = {Tischler, David C. and Tischler, Rosamond W.}, title = {Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds}, journal = {Annales de l'Institut Fourier}, pages = {213--227}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {4}, year = {1974}, doi = {10.5802/aif.539}, mrnumber = {52 #1726}, zbl = {0287.57016}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.539/} }
TY - JOUR AU - Tischler, David C. AU - Tischler, Rosamond W. TI - Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds JO - Annales de l'Institut Fourier PY - 1974 SP - 213 EP - 227 VL - 24 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.539/ DO - 10.5802/aif.539 LA - en ID - AIF_1974__24_4_213_0 ER -
%0 Journal Article %A Tischler, David C. %A Tischler, Rosamond W. %T Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds %J Annales de l'Institut Fourier %D 1974 %P 213-227 %V 24 %N 4 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.539/ %R 10.5802/aif.539 %G en %F AIF_1974__24_4_213_0
Tischler, David C.; Tischler, Rosamond W. Topological conjugacy of locally free ${\bf R}^{n-1}$ actions on $n$-manifolds. Annales de l'Institut Fourier, Tome 24 (1974) no. 4, pp. 213-227. doi : 10.5802/aif.539. http://www.numdam.org/articles/10.5802/aif.539/
[1] Foliations and Pseudogroups, American Journal of Mathematics, 87 (1965), 98-102. | MR | Zbl
,[2] Celestial Mechanics, Part II, W. A. Benjamin, New York, 1969. | Zbl
,[3] Thesis, " Conjugacy Problems for Rk Actions ", City University of New York, 1971.
,[4] An Introduction to Harmonic Analysis, John Wiley and Sons, New York, 1968. | MR | Zbl
,[5] The Linear Difference Equation of First Order for Angular Variables, Duke Mathematics Journal, 12 (1945), 445-449. | MR | Zbl
,Cité par Sources :