Soit une fonction additive définie sur un clan à valeurs dans un groupe topologique commutatif séparé et soit un idéal de . On donne des conditions suffisantes pour que soit la somme de deux fonctions additives, l’une essentiellement portée sur , l’autre nulle sur . Ce résultat est utilisé pour obtenir deux décompositions de Lebesgue. On indique aussi d’autres applications ainsi que la théorie correspondante pour les mesures extérieures.
Let be an additive function on a ring of sets, with values in a commutative Hausdorff topological group, and let be an ideal of . Conditions are given under which can be represented as the sum of two additive functions, one essentially supported on , the other vanishing on . The result is used to obtain two Lebesgue-type decomposition theorems. Other applications and the corresponding theory for outer measures are also indicated.
@article{AIF_1972__22_3_131_0, author = {Traynor, Tim}, title = {Decomposition of group-valued additive set functions}, journal = {Annales de l'Institut Fourier}, pages = {131--140}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {22}, number = {3}, year = {1972}, doi = {10.5802/aif.427}, mrnumber = {48 #11439}, zbl = {0228.28004}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.427/} }
TY - JOUR AU - Traynor, Tim TI - Decomposition of group-valued additive set functions JO - Annales de l'Institut Fourier PY - 1972 SP - 131 EP - 140 VL - 22 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.427/ DO - 10.5802/aif.427 LA - en ID - AIF_1972__22_3_131_0 ER -
Traynor, Tim. Decomposition of group-valued additive set functions. Annales de l'Institut Fourier, Tome 22 (1972) no. 3, pp. 131-140. doi : 10.5802/aif.427. http://www.numdam.org/articles/10.5802/aif.427/
[1] Decomposition of additive set functions, Duke Math. Jour., 10 (1943), 653-665. | MR | Zbl
,[2] Outer measures with values in a topological group, Proc. Lond. Math. Soc. (3), 19 (1969), 89-106. | MR | Zbl
,[3] Group-valued outer measures, International Congress of Mathematicians, Nice, 1970. | Zbl
,[4] Absolute continuity for group-valued measures (to appear), Can. Math. Bull., 1973. | MR | Zbl
,[5] A general Hewitt-Yosida Decomposition, (to appear). Can. Jour. Math. | Zbl
,Cité par Sources :