Corrigendum to “Boundary volume and length spectra of Riemannian manifolds: What the middle degree Hodge spectrum doesn’t reveal”
[Corrigendum de « Volume du bord et spectre de longueurs des variétés riemanniennes : les invariants que le spectre de Hodge de degré moyen ne révèle pas »]
Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2647-2648.

Nous corrigeons certaines erreurs concernant la question de savoir si les orbifolds et les variétés peuvent être distingués au moyen de leurs spectres.

We correct errors concerning the question of whether orbifolds and manifolds can be distinguished by their spectra.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3470
Classification : 58J53, 53C20
Keywords: isospectral, Laplacian, orbifold
Mot clés : isospectral, Laplacien, orbifold
Gordon, Carolyn S. 1 ; Rossetti, Juan Pablo 2

1 Department of Mathematics Dartmouth College Hanover, NH 03755 (USA)
2 FAMAF Univ. Nac. Córdoba 5000-Córdoba (Argentina)
@article{AIF_2021__71_6_2647_0,
     author = {Gordon, Carolyn S. and Rossetti, Juan Pablo},
     title = {Corrigendum to {{\textquotedblleft}Boundary} volume and length spectra of {Riemannian} manifolds: {What} the middle degree {Hodge} spectrum doesn{\textquoteright}t reveal{\textquotedblright}},
     journal = {Annales de l'Institut Fourier},
     pages = {2647--2648},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {6},
     year = {2021},
     doi = {10.5802/aif.3470},
     zbl = {07554456},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.3470/}
}
TY  - JOUR
AU  - Gordon, Carolyn S.
AU  - Rossetti, Juan Pablo
TI  - Corrigendum to “Boundary volume and length spectra of Riemannian manifolds: What the middle degree Hodge spectrum doesn’t reveal”
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 2647
EP  - 2648
VL  - 71
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.3470/
DO  - 10.5802/aif.3470
LA  - en
ID  - AIF_2021__71_6_2647_0
ER  - 
%0 Journal Article
%A Gordon, Carolyn S.
%A Rossetti, Juan Pablo
%T Corrigendum to “Boundary volume and length spectra of Riemannian manifolds: What the middle degree Hodge spectrum doesn’t reveal”
%J Annales de l'Institut Fourier
%D 2021
%P 2647-2648
%V 71
%N 6
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.3470/
%R 10.5802/aif.3470
%G en
%F AIF_2021__71_6_2647_0
Gordon, Carolyn S.; Rossetti, Juan Pablo. Corrigendum to “Boundary volume and length spectra of Riemannian manifolds: What the middle degree Hodge spectrum doesn’t reveal”. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2647-2648. doi : 10.5802/aif.3470. http://www.numdam.org/articles/10.5802/aif.3470/

[1] Dryden, Emily B.; Gordon, Carolyn S.; Greenwald, Sarah J.; Webb, David L. Erratum to “Asymptotic expansion of the heat kernel for orbifolds”, Mich. Math. J., Volume 66 (2017) no. 1, pp. 221-222 | DOI | MR | Zbl

[2] Gordon, Carolyn S.; Rossetti, Juan P. Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn’t reveal, Ann. Inst. Fourier, Volume 53 (2003) no. 7, pp. 2297-2314 | DOI | MR | Zbl

Cité par Sources :