Étant donné un grand fibré en droites gros sur une variété projective et le choix de points différents sur , on donne une nouvelle construction de corps d’Okounkov qui donne des informations géométriques importantes sur comme, par example, le volume de , la constante de Seshadri de aux points et la possibilité de construire des « Kähler packings » centrés en . Les cas des variétés toriques et des surfaces sont examinés en détail.
Starting from the data of a big line bundle on a projective manifold with a choice of different points on we provide a new construction of Okounkov bodies that encode important geometric features of such as the volume of , the (moving) multipoint Seshadri constant of at , and the possibility to construct Kähler packings centered at . Toric manifolds and surfaces are examined in detail.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3462
Keywords: Okounkov body, Seshadri constant, packings problem, projective manifold, ample line bundle.
Mot clés : Corps d’Okounkov, constante de Seshadri, problème du « packing », variété projective, fibré en droite ample.
@article{AIF_2021__71_6_2595_0, author = {Trusiani, Antonio}, title = {Multipoint {Okounkov} bodies}, journal = {Annales de l'Institut Fourier}, pages = {2595--2646}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {6}, year = {2021}, doi = {10.5802/aif.3462}, zbl = {07554455}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3462/} }
TY - JOUR AU - Trusiani, Antonio TI - Multipoint Okounkov bodies JO - Annales de l'Institut Fourier PY - 2021 SP - 2595 EP - 2646 VL - 71 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3462/ DO - 10.5802/aif.3462 LA - en ID - AIF_2021__71_6_2595_0 ER -
Trusiani, Antonio. Multipoint Okounkov bodies. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2595-2646. doi : 10.5802/aif.3462. http://www.numdam.org/articles/10.5802/aif.3462/
[1] Okounkov bodies and toric degenerations, Math. Ann., Volume 356 (2013) no. 3, pp. 1183-1202 | DOI | MR | Zbl
[2] A primer on Seshadri constants, Interactions of classical and numerical algebraic geometry (Contemp. Math.), Volume 496, Amer. Math. Soc., Providence, RI, 2009, pp. 33-70 | DOI | MR | Zbl
[3] Zariski chambers, volumes, and stable base loci, J. Reine Angew. Math., Volume 576 (2004), pp. 209-233 | DOI | MR | Zbl
[4] Symplectic packing in dimension , Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 420-437 | DOI | MR | Zbl
[5] Corps d’Okounkov, Séminaire Bourbaki, Volume 65 (2012), pp. 1-38 | Zbl
[6] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011, xxiv+841 pages | DOI | MR
[7] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Math.), Volume 1507, Springer, Berlin, 1992, pp. 87-104 | DOI | MR | Zbl
[8] A numerical criterion for very ample line bundles, J. Differential Geom., Volume 37 (1993) no. 2, pp. 323-374 | DOI | MR | Zbl
[9] Rationality of Seshadri constants and the Segre–Harbourne–Gimigliano–Hirschowitz conjecture, Adv. Math., Volume 303 (2016), pp. 1162-1170 | DOI | MR | Zbl
[10] Kähler packings and Seshadri constants on projective complex surfaces, Differential Geom. Appl., Volume 52 (2017), pp. 51-63 | DOI | MR | Zbl
[11] Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 6, pp. 1701-1734 | DOI | Numdam | MR | Zbl
[12] Restricted volumes and base loci of linear series, Amer. J. Math., Volume 131 (2009) no. 3, pp. 607-651 | DOI | MR | Zbl
[13] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993, xii+157 pages (The William H. Roever Lectures in Geometry) | DOI | MR | Zbl
[14] Okounkov bodies and Seshadri constants, Adv. Math., Volume 241 (2013), pp. 246-262 | DOI | MR | Zbl
[15] Toric degenerations and symplectic geometry of smooth projective varieties, J. Lond. Math. Soc. (2), Volume 99 (2019) no. 2, pp. 377-402 | DOI | MR | Zbl
[16] Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2), Volume 176 (2012) no. 2, pp. 925-978 | DOI | MR | Zbl
[17] Newton polyhedron, Hilbert polynomial, and sums of finite sets, Funct. Anal. Appl., Volume 26 (1992) no. 4, p. 1 | DOI | Zbl
[18] Infinitesimal Newton–Okounkov bodies and jet separation, Duke Math. J., Volume 166 (2017) no. 7, pp. 1349-1376 | DOI | MR | Zbl
[19] Positivity of line bundles and Newton–Okounkov bodies, Doc. Math., Volume 22 (2017), pp. 1285-1302 | DOI | MR | Zbl
[20] Convex bodies appearing as Okounkov bodies of divisors, Adv. Math., Volume 229 (2012) no. 5, pp. 2622-2639 | DOI | MR | Zbl
[21] Positivity in algebraic geometry I: Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004, xviii+387 pages | DOI | MR | Zbl
[22] Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl
[23] Symplectic packings and algebraic geometry, Invent. Math., Volume 115 (1994) no. 3, pp. 405-434 (With an appendix by Yael Karshon) | DOI | MR | Zbl
[24] On the -th problem of Hilbert, Amer. J. Math., Volume 81 (1959), pp. 766-772 | DOI | MR | Zbl
[25] Base loci of linear series are numerically determined, Trans. Amer. Math. Soc., Volume 355 (2003) no. 2, pp. 551-566 | DOI | MR | Zbl
[26] Brunn–Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | DOI | MR | Zbl
[27] Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) (Progr. Math.), Volume 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329-347 | DOI | MR | Zbl
[28] Extended Okounkov bodies and multi-point Seshadri constants (2017) (https://arxiv.org/abs/1710.04351)
[29] Pluricanonical systems on algebraic varieties of general type, Invent. Math., Volume 165 (2006) no. 3, pp. 551-587 | DOI | MR | Zbl
[30] Okounkov bodies and the Kähler geometry of projective manifolds (2015) (https://arxiv.org/abs/1510.00510)
Cité par Sources :