[Théorie d’indice Callias équivariant par géométrie grossière]
The equivariant coarse index is well-understood and widely used for actions by discrete groups. We first extend the definition of this index to general locally compact groups. We use a suitable notion of admissible modules over
L’indice grossier équivariant est bien compris et utilisé pour les actions par les groupes discrets. On commence par étendre la définition de cet indice aux groupes localement compacts généraux. On utilise une notion de modules admissibles sur des
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3445
Keywords: Roe algebra, equivariant index, proper group action, locally compact group, Callias-type operator
Mots-clés : Algèbre de Roe, indice équivariant, action propre, groupe localement compact, opérateur de type Callias
Guo, Hao 1 ; Hochs, Peter 2 ; Mathai, Varghese 3

@article{AIF_2021__71_6_2387_0, author = {Guo, Hao and Hochs, Peter and Mathai, Varghese}, title = {Equivariant {Callias} index theory via coarse geometry}, journal = {Annales de l'Institut Fourier}, pages = {2387--2430}, publisher = {Association des Annales de l'Institut Fourier}, volume = {71}, number = {6}, year = {2021}, doi = {10.5802/aif.3445}, zbl = {07554450}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3445/} }
TY - JOUR AU - Guo, Hao AU - Hochs, Peter AU - Mathai, Varghese TI - Equivariant Callias index theory via coarse geometry JO - Annales de l'Institut Fourier PY - 2021 SP - 2387 EP - 2430 VL - 71 IS - 6 PB - Association des Annales de l'Institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3445/ DO - 10.5802/aif.3445 LA - en ID - AIF_2021__71_6_2387_0 ER -
%0 Journal Article %A Guo, Hao %A Hochs, Peter %A Mathai, Varghese %T Equivariant Callias index theory via coarse geometry %J Annales de l'Institut Fourier %D 2021 %P 2387-2430 %V 71 %N 6 %I Association des Annales de l'Institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3445/ %R 10.5802/aif.3445 %G en %F AIF_2021__71_6_2387_0
Guo, Hao; Hochs, Peter; Mathai, Varghese. Equivariant Callias index theory via coarse geometry. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2387-2430. doi : 10.5802/aif.3445. https://www.numdam.org/articles/10.5802/aif.3445/
[1] Parallelizability of proper actions, global
[2] Remark on Callias’ index theorem, Rep. Math. Phys., Volume 28 (1989) no. 1, pp. 1-6 | DOI | MR | Zbl
[3] On the index of Callias-type operators, Geom. Funct. Anal., Volume 3 (1993) no. 5, pp. 431-438 | DOI | MR | Zbl
[4] Classifying space for proper actions and
[5] Some remarks on the paper of Callias, Commun. Math. Phys., Volume 62 (1978) no. 3, pp. 235-245 | DOI | MR | Zbl
[6] The index theory on non-compact manifolds with proper group action, J. Geom. Phys., Volume 98 (2015), pp. 275-284 | DOI | MR | Zbl
[7] Callias-type operators in von Neumann algebras, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 546-586 | DOI | MR | Zbl
[8]
[9] A
[10] The coarse index class with support (2018) (https://arxiv.org/abs/1706.06959)
[11] Axial anomalies and index theorems on open spaces, Commun. Math. Phys., Volume 62 (1978) no. 3, pp. 213-234 | DOI | MR | Zbl
[12] An index formula for perturbed Dirac operators on Lie manifolds, J. Geom. Anal., Volume 24 (2014) no. 4, pp. 1808-1843 | DOI | MR | Zbl
[13] Callias-type operators in
[14] The
[15] Geometrization of the strong Novikov conjecture for residually finite groups, J. Reine Angew. Math., Volume 621 (2008), pp. 159-189 | DOI | MR | Zbl
[16] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 58, pp. 83-196 | MR | Zbl
[17] Index of Equivariant Callias-Type Operators and Invariant Metrics of Positive Scalar Curvature, J. Geom. Anal., Volume 31 (2021) no. 1, pp. 1-34 | DOI | MR | Zbl
[18] Coarse geometry and Callias quantisation, Trans. Am. Math. Soc., Volume 374 (2021) no. 4, pp. 2479-2520 | DOI | MR | Zbl
[19] Positive scalar curvature and Poincaré duality for proper actions, J. Noncommut. Geom., Volume 13 (2019) no. 4, pp. 1381-1433 | DOI | MR | Zbl
[20] A Lichnerowicz Vanishing Theorem for the Maximal Roe Algebra (2021) (https://arxiv.org/abs/1905.12299)
[21] Proper metrics on locally compact groups, and proper affine isometric actions on Banach spaces (2006) (https://arxiv.org/abs/math/0606794)
[22] Analytic
[23] A coarse Mayer–Vietoris principle, Math. Proc. Camb. Philos. Soc., Volume 114 (1993) no. 1, pp. 85-97 | DOI | MR | Zbl
[24] Geometric quantization and families of inner products, Adv. Math., Volume 282 (2015), pp. 362-426 | DOI | MR | Zbl
[25] An equivariant index for proper actions III: The invariant and discrete series indices, Differ. Geom. Appl., Volume 49 (2016), pp. 1-22 | DOI | MR | Zbl
[26] An equivariant Atiyah–Patodi–Singer index theorem for proper actions I: the index formula (2020) (https://arxiv.org/abs/1904.11146)
[27] An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the
[28] An index theorem of Callias type for pseudodifferential operators, J.
[29] A Callias-type index theorem with degenerate potentials, Commun. Partial Differ. Equations, Volume 40 (2015) no. 2, pp. 219-264 | DOI | MR | Zbl
[30] The scalar curvature on totally geodesic fiberings, Ann. Global Anal. Geom., Volume 18 (2000) no. 6, pp. 589-600 | DOI | MR | Zbl
[31] A short proof of an index theorem, Proc. Am. Math. Soc., Volume 129 (2001) no. 12, pp. 3729-3736 | DOI | MR | Zbl
[32] The fundamental equations of a submersion, Mich. Math. J., Volume 13 (1966), pp. 459-469 | MR | Zbl
[33] Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Am. Math. Soc., Volume 104 (1993) no. 497, p. x+90 | DOI | MR | Zbl
[34] Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, American Mathematical Society, 1996, x+100 pages | DOI | MR
[35] Comparing analytic assembly maps, Q. J. Math, Volume 53 (2002) no. 2, pp. 241-248 | DOI | MR | Zbl
[36] Lectures on coarse geometry, University Lecture Series, 31, American Mathematical Society, 2003, viii+175 pages | DOI | MR
[37] Positive curvature, partial vanishing theorems and coarse indices, Proc. Edinb. Math. Soc., II. Ser., Volume 59 (2016) no. 1, pp. 223-233 | DOI | MR | Zbl
[38] The topology of positive scalar curvature, Proceedings of the International Congress of Mathematicians (Seoul 2014) Vol. II, Kyung Moon Sa (2014), pp. 1285-1307 | MR | Zbl
[39] Totally geodesic maps, J. Differ. Geom., Volume 4 (1970), pp. 73-79 | MR | Zbl
[40] Higher index theory, Cambridge Studies in Advanced Mathematics, 189, Cambridge University Press, 2020, xi+581 pages | DOI
[41] An index for confined monopoles, Commun. Math. Phys., Volume 327 (2014) no. 1, pp. 117-149 | DOI | MR | Zbl
[42] The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math., Volume 147 (1998) no. 2, pp. 325-355 | DOI | MR | Zbl
[43] The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000) no. 1, pp. 201-240 | DOI | MR | Zbl
[44] A characterization of the image of the Baum–Connes map, Quanta of maths (Clay Mathematics Proceedings), Volume 11, American Mathematical Society, 2010, pp. 649-657 | MR | Zbl
Cité par Sources :