Nous poursuivons l’étude des groupes pleins de graphages ainsi que des adhérences de leurs groupes dérivés, que nous appelons groupes pleins dérivés. Notre résultat principal montre que toute action préservant la mesure de probabilité d’un groupe de type fini est d’entropie de Rokhlin finie si et seulement si son groupe plein dérivé est de rang topologique fini. Nous montrons également que tout graphage est moyennable si et seulement si son groupe plein l’est, et présentons des exemples variés de groupes pleins (parfois dérivés) qui rentrent dans le cadre de la géométrie des groupes polonais construits par Rosendal. On en déduit que tout isomorphisme abstrait entre des groupes pleins de graphages ergodiques moyennables doit être une quasi-isométrie pour leurs distances respectives. Enfin, on montre que les groupes pleins des transformations de rang 1 sont de rang topologique 2.
We pursue the study of full groups of graphings and of the closures of their derived groups, which we call derived full groups. Our main result shows that aperiodic probability measure-preserving actions of finitely generated groups have finite Rokhlin entropy if and only if their derived full group has finite topological rank. We further show that a graphing is amenable if and only if its full group is, and explain why various examples of (derived) full groups fit very well into Rosendal’s geometric framework for Polish groups. As an application, we obtain that every abstract group isomorphism between full groups of amenable ergodic graphings must be a quasi-isometry for their respective metrics. We finally show that full groups of rank one transformations have topological rank 2.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : $\mathrm{L}^1$ full groups, derived groups, Rokhlin entrop
@article{AIF_2021__71_5_1885_0, author = {Le Ma{\^\i}tre, Fran\c{c}ois}, title = {On a measurable analogue of small topological full groups {II}}, journal = {Annales de l'Institut Fourier}, pages = {1885--1927}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3443}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3443/} }
TY - JOUR AU - Le Maître, François TI - On a measurable analogue of small topological full groups II JO - Annales de l'Institut Fourier PY - 2021 SP - 1885 EP - 1927 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3443/ DO - 10.5802/aif.3443 LA - en ID - AIF_2021__71_5_1885_0 ER -
%0 Journal Article %A Le Maître, François %T On a measurable analogue of small topological full groups II %J Annales de l'Institut Fourier %D 2021 %P 1885-1927 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3443/ %R 10.5802/aif.3443 %G en %F AIF_2021__71_5_1885_0
Le Maître, François. On a measurable analogue of small topological full groups II. Annales de l'Institut Fourier, Tome 71 (2021) no. 5, pp. 1885-1927. doi : 10.5802/aif.3443. http://www.numdam.org/articles/10.5802/aif.3443/
[1] Behaviour of Entropy Under Bounded and Integrable Orbit Equivalence, Geom. Funct. Anal., Volume 26 (2016) no. 6, pp. 1483-1525 | DOI | MR | Zbl
[2] A class of Ergodic Transformations Having Simple Spectrum, Proc. Am. Math. Soc., Volume 27 (1971), pp. 275-279 | DOI | MR | Zbl
[3] The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, 232, Cambridge University Press, 1996 | DOI
[4] Partitions of Lebesgue Space in Trajectories Defined by Ergodic Automorphisms, Funct. Anal. Appl., Volume 2 (1968) no. 3, pp. 190-199 | DOI | MR | Zbl
[5] More Polish Full Groups, Topology Appl., Volume 202 (2016), pp. 80-105 | DOI | MR | Zbl
[6] An Amenable Equivalence Relation Is Generated by a Single Transformation, Ergodic Theory Dyn. Syst., Volume 1 (1981) no. 04, pp. 431-450 | DOI | MR | Zbl
[7] Spearman’s Footrule as a Measure of Disarray, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 39 (1977) no. 2, pp. 262-268 | MR | Zbl
[8] Bounded Normal Generation Is Not Equivalent to Topological Bounded Normal Generation, Extr. Math., Volume 34 (2019) no. 1, pp. 85-97 | DOI | MR | Zbl
[9] On Groups of Measure Preserving Transformations. I, Am. J. Math., Volume 81 (1959) no. 1, pp. 119-159 | DOI | MR | Zbl
[10] Orbit Equivalence and Measured Group Theory, Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), Hindustan Book Agency, 2011, pp. 1501-1527 | DOI | Zbl
[11] Some Extremely Amenable Groups Related to Operator Algebras and Ergodic Theory, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 279-315 | DOI | MR | Zbl
[12] Full Groups of Cantor Minimal Systems, Isr. J. Math., Volume 111 (1999) no. 1, pp. 285-320 | DOI | MR | Zbl
[13] Ergodic Theory via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, 2003 | DOI
[14] The Automorphism Group of the Gaussian Measure Cannot Act Pointwise, Isr. J. Math., Volume 148 (2005) no. 1, pp. 305-329 | DOI | MR | Zbl
[15] Countable Borel Equivalence Relations, J. Math. Log., Volume 02 (2002) no. 01, pp. 1-80 | DOI | MR | Zbl
[16] On the Notion of Recurrence in Discrete Stochastic Processes, Bull. Am. Math. Soc., Volume 53 (1947) no. 10, pp. 1002-1010 | MR | Zbl
[17] Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, 1995 | DOI
[18] Global Aspects of Ergodic Group Actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, 2010 | DOI
[19] Topological Properties of Full Groups, Ergodic Theory Dyn. Syst., Volume 30 (2010) no. 2, pp. 525-545 | DOI | MR | Zbl
[20] Sur les groupes pleins préservant une mesure de probabilité, Ph. D. Thesis, ENS Lyon, France (2014)
[21] On Full Groups of Non-Ergodic Probability-Measure-Preserving Equivalence Relations, Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 7, pp. 2218-2245 | DOI | MR | Zbl
[22] On a Measurable Analogue of Small Topological Full Groups, Adv. Math., Volume 332 (2018), pp. 235-286 | DOI | MR | Zbl
[23] Topological Generators for Full Groups of Hyperfinite Pmp Equivalence Relations, 2016 (https://arxiv.org/abs/1606.08080)
[24] Some Remarks on Topological Full Groups of Cantor Minimal Systems, Int. J. Math., Volume 17 (2006) no. 02, pp. 231-251 | DOI | MR | Zbl
[25] Topological Full Groups of One-Sided Shifts of Finite Type, J. Reine Angew. Math., Volume 2015 (2013) no. 705, pp. 35-84 | DOI | Zbl
[26] Simple Groups of Dynamical Origin, Ergodic Theory Dyn. Syst. (2017), pp. 1-26 | DOI
[27] Palindromic Subshifts and Simple Periodic Groups of Intermediate Growth, Ann. Math., Volume 187 (2018) no. 3, pp. 667-719 | DOI | MR | Zbl
[28] Concentration of Measure and Whirly Actions of Polish Groups, Probabilistic Approach to Geometry (Kyoto, 2008) (Advanced Studies in Pure Mathematics), Volume 57, Mathematical Society of Japan (2009), pp. 383-403 | Zbl
[29] Lectures on the Entropy Theory of Measure-Preserving Transformations, Russ. Math. Surv., Volume 22 (1967) no. 5, p. 1 | DOI | Zbl
[30] Coarse Geometry of Topological Groups, Cambridge Tracts in Mathematics, 223, CUP, 2021 | DOI | MR | Zbl
[31] Ergodic Actions of Countable Groups and Finite Generating Partitions, Groups Geom. Dyn., Volume 9 (2015) no. 3, pp. 793-810 | DOI | MR | Zbl
[32] Krieger’s Finite Generator Theorem for Actions of Countable Groups I, Invent. Math., Volume 215 (2019) no. 1, pp. 265-310 | DOI | MR | Zbl
Cité par Sources :