Nous nous intéressons à la dispersion d’une particule dont le mouvement peut être décrit par un processus à sauts de vitesse contraint par un force extérieure. Pour établir des résultats de grandes déviations, nous étudions l’équation de Kolmogorov après rééchelonnement hyperbolique
We study the dispersion of a particle whose motion dynamics can be described by a forced velocity jump process. To investigate large deviations results, we study the Kolmogorov forward equation of this process in the hyperbolic scaling
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Kinetic equations, Hamilton–Jacobi equations, Large deviations, Perturbed test function method, Piecewise Deterministic Markov Process.
Mot clés : Équations cinétiques, Équations de Hamilton–Jacobi, Grandes déviations, Méthode de la fonction test perturbée, Processus de Markov déterministes par morceaux.
@article{AIF_2021__71_4_1733_0, author = {Caillerie, Nils}, title = {Large deviations of a forced velocity-jump process with a {Hamilton{\textendash}Jacobi} approach}, journal = {Annales de l'Institut Fourier}, pages = {1733--1755}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3433}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.3433/} }
TY - JOUR AU - Caillerie, Nils TI - Large deviations of a forced velocity-jump process with a Hamilton–Jacobi approach JO - Annales de l'Institut Fourier PY - 2021 SP - 1733 EP - 1755 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.3433/ DO - 10.5802/aif.3433 LA - en ID - AIF_2021__71_4_1733_0 ER -
%0 Journal Article %A Caillerie, Nils %T Large deviations of a forced velocity-jump process with a Hamilton–Jacobi approach %J Annales de l'Institut Fourier %D 2021 %P 1733-1755 %V 71 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.3433/ %R 10.5802/aif.3433 %G en %F AIF_2021__71_4_1733_0
Caillerie, Nils. Large deviations of a forced velocity-jump process with a Hamilton–Jacobi approach. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1733-1755. doi : 10.5802/aif.3433. https://www.numdam.org/articles/10.5802/aif.3433/
[1] Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol., Volume 9 (1980) no. 2, pp. 147-177 (Accessed 2017-09-21) | DOI | MR | Zbl
[2] Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques & Applications, Springer, 1994 no. 17
[3] Exit Time Problems in Optimal Control and Vanishing Viscosity Method, SIAM J. Control Optimization, Volume 26 (1988) no. 5, pp. 1133-1148 (Accessed 2017-03-27) | DOI | MR | Zbl
[4] A Hamilton–Jacobi approach for front propagation in kinetic equations, Kinet. Relat. Models, Volume 8 (2015) no. 2, pp. 255-280 (Accessed 2017-03-06) | DOI | MR | Zbl
[5] Spreading in kinetic reaction–transport equations in higher velocity dimensions, Eur. J. Appl. Math., Volume 30 (2019) no. 2, pp. 219-247 (Accessed 2020-04-08) | DOI | MR | Zbl
[6] A kinetic eikonal equation, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 5, pp. 243-248 (Accessed 2016-11-09) | DOI | MR | Zbl
[7] Large deviations for velocity-jump processes and non-local Hamilton–Jacobi equations (2016) (https://arxiv.org/abs/1607.03676)
[8] Invasion fronts with variable motility: Phenotype selection, spatial sorting and wave acceleration, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 15, pp. 761-766 | DOI | MR | Zbl
[9] Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Arch. Ration. Mech. Anal., Volume 217 (2015) no. 2, pp. 571-617 (Accessed 2016-11-09) | DOI | MR | Zbl
[10] A Hamilton–Jacobi approach for a model of population structured by space and trait, Commun. Math. Sci., Volume 13 (2015) no. 6, pp. 1431-1452 (Accessed 2017-03-06) | DOI | MR | Zbl
[11] Large deviations of a velocity jump process with a Hamilton–Jacobi approach, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 2, pp. 170-175 (Accessed 2017-02-21) | DOI | MR | Zbl
[12] Stochastic and deterministic kinetic equations in the context of mathematics applied to biology, phdthesis, Université de Lyon (2017) (Accessed 2018-01-17 https://tel.archives-ouvertes.fr/tel-01579877/document)
[13] Chemotactic waves of bacteria at the mesoscale, J. Eur. Math. Soc., Volume 22 (2019) no. 2, pp. 593-668 (Accessed 2020-04-08) | DOI | MR | Zbl
[14] Singular measure as principal eigenfunction of some nonlocal operators, Appl. Math. Lett., Volume 26 (2013) no. 8, pp. 831-835 (Accessed 2016-12-16) | DOI | MR | Zbl
[15] Markov models and optimization, Monographs on Statistics and Applied Probability, 49, Chapman & Hall, 1993 | DOI | Zbl
[16] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. R. Soc. Edinb., Sect. A, Math., Volume 111 (1989) no. 3-4, pp. 359-375 (Accessed 2017-02-21) | DOI | MR | Zbl
[17] A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 1, pp. 1-20 (Accessed 2020-04-08) | DOI | Numdam | MR | Zbl
[18] A PDE Approach to Geometric Optics for Certain Semilinear Parabolic Equations, Indiana Univ. Math. J., Volume 38 (1989) no. 1, pp. 141-172 | DOI | MR | Zbl
[19] Exit probabilities and optimal stochastic control, Appl. Math. Optim., Volume 4 (1977) no. 1, pp. 329-346 (Accessed 2020-04-08) | DOI | MR | Zbl
[20] PDE-viscosity solution approach to some problems of large deviations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., Volume 13 (1986) no. 2, pp. 171-192 (Accessed 2017-01-30) | Numdam | MR | Zbl
[21] Geometric Optics Approach to Reaction-Diffusion Equations, SIAM J. Appl. Math., Volume 46 (1986) no. 2, pp. 222-232 (Accessed 2017-04-13) | DOI | MR | Zbl
[22] A Hamilton–Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 2, pp. 155-160 (Accessed 2017-09-22) | DOI | MR | Zbl
[23] Asymptotic analysis of a selection model with space, J. Math. Pures Appl., Volume 104 (2015) no. 6, pp. 1108-1118 (Accessed 2020-04-08) | DOI | MR | Zbl
[24] Time fluctuations in a population model of adaptive dynamics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 1, pp. 41-58 (Accessed 2017-09-22) | DOI | Numdam | MR | Zbl
[25] Global existence to the BGK model of Boltzmann equation, J. Differ. Equations, Volume 82 (1989) no. 1, pp. 191-205 (Accessed 2020-04-08) | DOI | MR | Zbl
[26] Piecewise Deterministic Processes in Biological Models, SpringerBriefs in Applied Sciences and Technology, Springer, 2017 (Accessed 2020-04-08) | DOI
[27] Directional persistence of chemotactic bacteria in a traveling concentration wave, Proc. Natl. Acad. Sci. USA, Volume 108 (2011) no. 39, pp. 16235-16240 | DOI
[28] Some stochastic processes which arise from a model of the motion of a bacterium, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 28 (1974) no. 4, pp. 305-315 (Accessed 2017-09-21) | DOI | Zbl
Cité par Sources :