Random subgroups, automorphisms, splittings
[Sous-groupes aléatoires, automorphismes, scindements]
Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1363-1391.

Nous montrons que si H est un sous-groupe aléatoire d’un groupe libre de type fini 𝔽 k , tout automorphisme de 𝔽 k préservant H est intérieur. Nous prouvons un résultat similaire pour les sous-groupes aléatoires de groupes hyperboliques toriques, et plus généralement de groupes hyperboliques relativement à des sous-groupes sveltes. Ces résultats découlent de la non-existence de scindements au-dessus de sous-groupes sveltes qui sont relatifs à un élément aléatoire. Les sous-groupes aléatoires peuvent être définis en termes de marches aléatoires ou de boules dans le graphe de Cayley de 𝔽 k .

Dans le cas du groupe libre 𝔽 k , nous démontrons aussi le résultat déterministe suivant  : si un mot cycliquement réduit h𝔽 k contient tous les mots réduits de longueur L, alors 𝔽 k n’a pas de scindement relatif à h au-dessus d’un sous-groupe de rang (k-1)(L-2).

We show that, if H is a random subgroup of a finitely generated free group 𝔽 k , only inner automorphisms of 𝔽 k may leave H invariant. A similar result holds for random subgroups of toral relatively hyperbolic groups, and more generally of groups which are hyperbolic relative to slender subgroups. These results follow from non-existence of splittings over slender groups which are relative to a random group element. Random subgroups are defined using random walks or balls in a Cayley tree of 𝔽 k .

In the free group 𝔽 k , we also prove the following deterministic result: if a cyclically reduced word h𝔽 k contains all reduced words of length L, then 𝔽 k has no splitting relative to h over a subgroup of rank (k-1)(L-2).

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3426
Classification : 20F28, 20E08, 20F67, 20P05
Keywords: Random subgroups, random walk, splitting, automorphisms, free group, relatively hyperbolic group
Mot clés : Sous-groupes aléatoires, marche aléatoire, scindements, automorphismes, groupes libres, groupes relativement hyperboliques
Guirardel, Vincent 1 ; Levitt, Gilbert 2

1 Univ Rennes, CNRS, IRMAR - UMR 6625 35000 Rennes (France)
2 Laboratoire de Mathématiques Nicolas Oresme (LMNO) Université de Caen et CNRS (UMR 6139) 14000 Caen (France) (Pour Shanghai : Normandie Univ, UNICAEN, CNRS, LMNO, 14000 Caen, France)
@article{AIF_2021__71_4_1363_0,
     author = {Guirardel, Vincent and Levitt, Gilbert},
     title = {Random subgroups, automorphisms, splittings},
     journal = {Annales de l'Institut Fourier},
     pages = {1363--1391},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.5802/aif.3426},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.3426/}
}
TY  - JOUR
AU  - Guirardel, Vincent
AU  - Levitt, Gilbert
TI  - Random subgroups, automorphisms, splittings
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 1363
EP  - 1391
VL  - 71
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.3426/
DO  - 10.5802/aif.3426
LA  - en
ID  - AIF_2021__71_4_1363_0
ER  - 
%0 Journal Article
%A Guirardel, Vincent
%A Levitt, Gilbert
%T Random subgroups, automorphisms, splittings
%J Annales de l'Institut Fourier
%D 2021
%P 1363-1391
%V 71
%N 4
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.3426/
%R 10.5802/aif.3426
%G en
%F AIF_2021__71_4_1363_0
Guirardel, Vincent; Levitt, Gilbert. Random subgroups, automorphisms, splittings. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1363-1391. doi : 10.5802/aif.3426. http://www.numdam.org/articles/10.5802/aif.3426/

[1] Antolín, Yago; Minasyan, Ashot; Sisto, Alessandro Commensurating endomorphisms of acylindrically hyperbolic groups and applications, Groups Geom. Dyn., Volume 10 (2016) no. 4, pp. 1149-1210 | DOI | MR | Zbl

[2] Bassino, Frédérique; Martino, Armando; Nicaud, Cyril; Ventura, Enric; Weil, Pascal Statistical properties of subgroups of free groups, Random Struct. Algorithms, Volume 42 (2013) no. 3, pp. 349-373 | DOI | MR | Zbl

[3] Bestvina, Mladen; Feighn, Mark Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl

[4] Bestvina, Mladen; Handel, Michael Train tracks and automorphisms of free groups, Ann. Math., Volume 135 (1992) no. 1, pp. 1-51 | DOI | MR | Zbl

[5] Bowditch, Brian H. Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | DOI | MR | Zbl

[6] Cashen, Christopher H.; Manning, Jason F. Virtual geometricity is rare, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 444-455 | DOI | MR | Zbl

[7] Cohen, Daniel E. Combinatorial group theory: a topological approach, London Mathematical Society Student Texts, 14, Cambridge University Press, 1989, x+310 pages | DOI | MR

[8] Dahmani, François; Guirardel, Vincent; Osin, Denis V. Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Am. Math. Soc., Volume 245 (2017) no. 1156, p. v+152 | MR | Zbl

[9] Dunwoody, Martin J.; Sageev, Michah E. JSJ-splittings for finitely presented groups over slender groups, Invent. Math., Volume 135 (1999) no. 1, pp. 25-44 | DOI | MR | Zbl

[10] Guirardel, Vincent; Levitt, Gilbert (in preparation.)

[11] Guirardel, Vincent; Levitt, Gilbert Splittings and automorphisms of relatively hyperbolic groups, Groups Geom. Dyn., Volume 9 (2015) no. 2, pp. 599-663 | DOI | MR | Zbl

[12] Guirardel, Vincent; Levitt, Gilbert JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017, vii+165 pages

[13] Jitsukawa, Toshiaki Malnormal subgroups of free groups, Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001) (Contemporary Mathematics), Volume 298, American Mathematical Society, 2002, pp. 83-95 | DOI | MR | Zbl

[14] Kapovich, Ilya; Schupp, Paul E.; Shpilrain, Vladimir Generic properties of Whitehead’s algorithm and isomorphism rigidity of random one-relator groups, Pac. J. Math., Volume 223 (2006) no. 1, pp. 113-140 | DOI | MR | Zbl

[15] Levitt, Gilbert; Paulin, Frédéric Geometric group actions on trees, Am. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl

[16] Logan, Alan D. Every group is the outer automorphism group of an HNN-extension of a fixed triangle group, Adv. Math., Volume 353 (2019), pp. 116-152 | DOI | MR | Zbl

[17] Lyndon, Roger C.; Schupp, Paul E. Combinatorial group theory, Classics in Mathematics, Springer, 2001, xiv+339 pages (reprint of the 1977 edition) | DOI

[18] Maher, Joseph; Sisto, Alessandro Random subgroups of acylindrically hyperbolic groups and hyperbolic embeddings, Int. Math. Res. Not. (2019) no. 13, pp. 3941-3980 | DOI | MR | Zbl

[19] Osin, Denis V. Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc., Volume 179 (2006) no. 843, p. vi+100 | MR | Zbl

[20] Otal, Jean-Pierre Certaines relations d’équivalence sur l’ensemble des bouts d’un groupe libre, J. Lond. Math. Soc., Volume 46 (1992) no. 1, pp. 123-139 | DOI | Zbl

[21] Paulin, Frédéric The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | MR | Zbl

[22] Paulin, Frédéric Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 147-167 | DOI | Numdam | Zbl

[23] Schupp, Paul E. A characterization of inner automorphisms, Proc. Am. Math. Soc., Volume 101 (1987) no. 2, pp. 226-228 | DOI | MR | Zbl

Cité par Sources :