Nous montrons que si est un sous-groupe aléatoire d’un groupe libre de type fini , tout automorphisme de préservant est intérieur. Nous prouvons un résultat similaire pour les sous-groupes aléatoires de groupes hyperboliques toriques, et plus généralement de groupes hyperboliques relativement à des sous-groupes sveltes. Ces résultats découlent de la non-existence de scindements au-dessus de sous-groupes sveltes qui sont relatifs à un élément aléatoire. Les sous-groupes aléatoires peuvent être définis en termes de marches aléatoires ou de boules dans le graphe de Cayley de .
Dans le cas du groupe libre , nous démontrons aussi le résultat déterministe suivant : si un mot cycliquement réduit contient tous les mots réduits de longueur , alors n’a pas de scindement relatif à au-dessus d’un sous-groupe de rang .
We show that, if is a random subgroup of a finitely generated free group , only inner automorphisms of may leave invariant. A similar result holds for random subgroups of toral relatively hyperbolic groups, and more generally of groups which are hyperbolic relative to slender subgroups. These results follow from non-existence of splittings over slender groups which are relative to a random group element. Random subgroups are defined using random walks or balls in a Cayley tree of .
In the free group , we also prove the following deterministic result: if a cyclically reduced word contains all reduced words of length , then has no splitting relative to over a subgroup of rank .
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Random subgroups, random walk, splitting, automorphisms, free group, relatively hyperbolic group
Mot clés : Sous-groupes aléatoires, marche aléatoire, scindements, automorphismes, groupes libres, groupes relativement hyperboliques
@article{AIF_2021__71_4_1363_0, author = {Guirardel, Vincent and Levitt, Gilbert}, title = {Random subgroups, automorphisms, splittings}, journal = {Annales de l'Institut Fourier}, pages = {1363--1391}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3426}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3426/} }
TY - JOUR AU - Guirardel, Vincent AU - Levitt, Gilbert TI - Random subgroups, automorphisms, splittings JO - Annales de l'Institut Fourier PY - 2021 SP - 1363 EP - 1391 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3426/ DO - 10.5802/aif.3426 LA - en ID - AIF_2021__71_4_1363_0 ER -
%0 Journal Article %A Guirardel, Vincent %A Levitt, Gilbert %T Random subgroups, automorphisms, splittings %J Annales de l'Institut Fourier %D 2021 %P 1363-1391 %V 71 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3426/ %R 10.5802/aif.3426 %G en %F AIF_2021__71_4_1363_0
Guirardel, Vincent; Levitt, Gilbert. Random subgroups, automorphisms, splittings. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1363-1391. doi : 10.5802/aif.3426. http://www.numdam.org/articles/10.5802/aif.3426/
[1] Commensurating endomorphisms of acylindrically hyperbolic groups and applications, Groups Geom. Dyn., Volume 10 (2016) no. 4, pp. 1149-1210 | DOI | MR | Zbl
[2] Statistical properties of subgroups of free groups, Random Struct. Algorithms, Volume 42 (2013) no. 3, pp. 349-373 | DOI | MR | Zbl
[3] Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl
[4] Train tracks and automorphisms of free groups, Ann. Math., Volume 135 (1992) no. 1, pp. 1-51 | DOI | MR | Zbl
[5] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | DOI | MR | Zbl
[6] Virtual geometricity is rare, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 444-455 | DOI | MR | Zbl
[7] Combinatorial group theory: a topological approach, London Mathematical Society Student Texts, 14, Cambridge University Press, 1989, x+310 pages | DOI | MR
[8] Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Am. Math. Soc., Volume 245 (2017) no. 1156, p. v+152 | MR | Zbl
[9] JSJ-splittings for finitely presented groups over slender groups, Invent. Math., Volume 135 (1999) no. 1, pp. 25-44 | DOI | MR | Zbl
[10]
(in preparation.)[11] Splittings and automorphisms of relatively hyperbolic groups, Groups Geom. Dyn., Volume 9 (2015) no. 2, pp. 599-663 | DOI | MR | Zbl
[12] JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017, vii+165 pages
[13] Malnormal subgroups of free groups, Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001) (Contemporary Mathematics), Volume 298, American Mathematical Society, 2002, pp. 83-95 | DOI | MR | Zbl
[14] Generic properties of Whitehead’s algorithm and isomorphism rigidity of random one-relator groups, Pac. J. Math., Volume 223 (2006) no. 1, pp. 113-140 | DOI | MR | Zbl
[15] Geometric group actions on trees, Am. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl
[16] Every group is the outer automorphism group of an HNN-extension of a fixed triangle group, Adv. Math., Volume 353 (2019), pp. 116-152 | DOI | MR | Zbl
[17] Combinatorial group theory, Classics in Mathematics, Springer, 2001, xiv+339 pages (reprint of the 1977 edition) | DOI
[18] Random subgroups of acylindrically hyperbolic groups and hyperbolic embeddings, Int. Math. Res. Not. (2019) no. 13, pp. 3941-3980 | DOI | MR | Zbl
[19] Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc., Volume 179 (2006) no. 843, p. vi+100 | MR | Zbl
[20] Certaines relations d’équivalence sur l’ensemble des bouts d’un groupe libre, J. Lond. Math. Soc., Volume 46 (1992) no. 1, pp. 123-139 | DOI | Zbl
[21] The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | MR | Zbl
[22] Sur les automorphismes extérieurs des groupes hyperboliques, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 2, pp. 147-167 | DOI | Numdam | Zbl
[23] A characterization of inner automorphisms, Proc. Am. Math. Soc., Volume 101 (1987) no. 2, pp. 226-228 | DOI | MR | Zbl
Cité par Sources :