Nous considérons une version du problème de l’extension de Whitney, globale et non linéaire, pour les fonctions lisses à valeurs dans des variétés et définies sur des domaines fermés à bords non-lisses dans des variétés possiblement non compactes. Supposant que est une sous-variété à bord anguleux, ou qu’elle est compacte et localement convexe à bords non-lisses, nous montrons que l’opérateur de restriction, à partir des fonctions définies partout, est une submersion de variétés localement convexes, et donc possède des scindages linéaires locaux sur les cartes. Nous considérons à cet effet l’opérateur de restriction correspondant pour les espaces localement convexes de sections de fibrés vectoriels à support compact, permettant aussi de tariter le cas plus général où n’a que des restrictions légères sur les cusps vers l’intérieur et l’extérieur, et montrons l’existence d’un opérateur de prolongement.
We consider a global, nonlinear version of the Whitney extension problem for manifold-valued smooth functions on closed domains , with non-smooth boundary, in possibly non-compact manifolds. Assuming is a submanifold with corners, or is compact and locally convex with rough boundary, we prove that the restriction map from everywhere-defined functions is a submersion of locally convex manifolds and so admits local linear splittings on charts. This is achieved by considering the corresponding restriction map for locally convex spaces of compactly-supported sections of vector bundles, allowing the even more general case where only has mild restrictions on inward and outward cusps, and proving the existence of an extension operator.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Whitney extension theorem, smooth functions on closed domain, Whitney jet, polynomial cusps, Fréchet space, submersion, manifolds with corners, manifolds with rough boundary, manifold of mappings, exponential law
Mot clés : théorème de l’extension de Whitney, fonctions lisses sur des domaines fermés, jet de Whitney, cuspides polynomiales, espace de Fréchet, submersion, variétés à bord anguleux, variétés à bords non-lisses, variétés d’applications, loi de l’exponentielle
@article{AIF_2021__71_3_1241_0, author = {Roberts, David Michael and Schmeding, Alexander}, title = {Extending {Whitney{\textquoteright}s} extension theorem: nonlinear function spaces}, journal = {Annales de l'Institut Fourier}, pages = {1241--1286}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3424}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3424/} }
TY - JOUR AU - Roberts, David Michael AU - Schmeding, Alexander TI - Extending Whitney’s extension theorem: nonlinear function spaces JO - Annales de l'Institut Fourier PY - 2021 SP - 1241 EP - 1286 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3424/ DO - 10.5802/aif.3424 LA - en ID - AIF_2021__71_3_1241_0 ER -
%0 Journal Article %A Roberts, David Michael %A Schmeding, Alexander %T Extending Whitney’s extension theorem: nonlinear function spaces %J Annales de l'Institut Fourier %D 2021 %P 1241-1286 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3424/ %R 10.5802/aif.3424 %G en %F AIF_2021__71_3_1241_0
Roberts, David Michael; Schmeding, Alexander. Extending Whitney’s extension theorem: nonlinear function spaces. Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 1241-1286. doi : 10.5802/aif.3424. http://www.numdam.org/articles/10.5802/aif.3424/
[1] Differentiable mappings on products with different degrees of differentiability in the two factors, Expo. Math., Volume 33 (2015) no. 2, pp. 184-222 | DOI | MR | Zbl
[2] Totally convex sets in complete Riemannian manifolds, J. Differ. Geom., Volume 16 (1981) no. 2, pp. 333-345 | MR | Zbl
[3] Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math., Volume 13 (1964), pp. 1-114 | DOI | MR | Zbl
[4] Differentiable functions, Bol. Soc. Bras. Mat., Volume 11 (1980) no. 2, pp. 139-189 | DOI | MR | Zbl
[5] Methods of geometric analysis in extension and trace problems. Volume 1, Monographs in Mathematics, 102, Springer, 2012, xxiv+560 pages | DOI | MR
[6] On the metrisability of bundle space, Proc. Am. Math. Soc., Volume 5 (1954), pp. 466-467 | DOI | Zbl
[7] Whitney’s extension problem for , Ann. Math., Volume 164 (2006) no. 1, pp. 313-359 | DOI | MR | Zbl
[8] extension by linear operators, Ann. Math., Volume 166 (2007) no. 3, pp. 779-835 | DOI | MR | Zbl
[9] Extension operators for spaces of infinite differentiable Whitney jets, J. Reine Angew. Math., Volume 602 (2007), pp. 123-154 | DOI | MR | Zbl
[10] Stein’s extension operator for sets with -boundary, Analysis (München), Volume 27 (2007) no. 2-3, pp. 251-259 | DOI | MR | Zbl
[11] Infinite-dimensional Lie groups without completeness restrictions, Geometry and analysis on finite- and infinite-dimensional Lie groups (Będlewo, 2000) (Banach Center Publications), Volume 55, Polish Acad. Sci., 2002, pp. 43-59 | DOI | MR | Zbl
[12] Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal., Volume 194 (2002) no. 2, pp. 347-409 | DOI | MR | Zbl
[13] Lie groups over non-discrete topological fields (2004) (arxiv.org/abs/math/0408008)
[14] Fundamentals of submersions and immersions between infinite-dimensional manifolds (2016) (arxiv.org/abs/1502.05795)
[15] Infinite-dimensional Lie groups (in preparation)
[16] Nonlinear potential theory of degenerate elliptic equations, Dover Publications, 2006, xii+404 pages (Unabridged republication of the 1993 original) | MR
[17] Strong topologies for spaces of smooth maps with infinite-dimensional target, Expo. Math., Volume 35 (2017) no. 1, pp. 13-53 | DOI | MR | Zbl
[18] Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., Volume 46 (1982) no. 1, pp. 80-147 | DOI | Zbl
[19] Schnittort und konvexe Mengen in vollständigen Riemannschen Mannigfaltigkeiten, Math. Ann., Volume 177 (1968), pp. 105-121 | DOI | MR | Zbl
[20] Differential calculus in locally convex spaces, Lecture Notes in Mathematics, 417, Springer, 1974, iii+143 pages | DOI | MR
[21] Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013, xvi+708 pages | MR
[22] Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn., Math., Volume 4 (1979) no. 2, pp. 383-401 | DOI | MR | Zbl
[23] Introduction to functional analysis, Oxford Graduate Texts in Mathematics, 2, Clarendon Press, 1997, x+437 pages | MR
[24] Manifolds of differentiable mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., 1980 | MR
[25] On Harmonic Measure and Rectifiability in Uniform Domains, J. Geom. Anal., Volume 29 (2019), pp. 1193-1205 | DOI | MR | Zbl
[26] Towards a Lie theory of locally convex groups, Jpn. J. Math., Volume 1 (2006) no. 2, pp. 291-468 | DOI | MR | Zbl
[27] The smooth Hom-stack of an orbifold, 2016 MATRIX Annals (Wood, David; Gier, Jan de; Praeger, Cheryl; Tao, Terence, eds.) (MATRIX Book Series), Volume 1, Springer, 2018 | DOI | MR | Zbl
[28] The diffeomorphism group of a non-compact orbifold, Diss. Math., Volume 507 (2015), p. 179 | DOI | MR | Zbl
[29] Derived functors in functional analysis, Lecture Notes in Mathematics, 1810, Springer, 2003, viii+134 pages | DOI | MR
[30] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934), pp. 63-89 | DOI | MR | Zbl
[31] Differentiable functions defined in closed sets. I, Trans. Am. Math. Soc., Volume 36 (1934) no. 2, pp. 369-387 | DOI | MR | Zbl
[32] Smooth extensions and spaces of smooth and holomorphic mappings, J. Geom. Symmetry Phys., Volume 5 (2006), pp. 118-126 | MR | Zbl
[33] Infinite-dimensional and higher structures in differential geometry (2013) (www.math.uni-hamburg.de/home/wockel/teaching/higher_structures.html, Lecture notes for a course given at the University of Hamburg)
Cité par Sources :