Le pinceau de Wiman–Edge est une famille universelle de courbes projectives non singulières de genre 6 et munie d’une action fidèle du groupe icosahédral. Le but principal de ce travail est la détermination de son groupe de monodromie. Nous montrons que ce groupe est arithmétique et commensurable avec un groupe modulaire de Hilbert. Nous donnons une interprétation modulaire de ce fait et décrivons en plus une uniformisation de la base.
The Wiman–Edge pencil is the universal family of projective, genus , complex-algebraic curves endowed with a faithful action of the icosahedral group. The goal of this paper is to prove that its monodromy group is commensurable with a Hilbert modular group; in particular is arithmetic. We then give a modular interpretation of this, as well as a uniformization of its base.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Wiman–Edge pencil, monodromy group
Mot clés : Pinceau de Wiman–Edge, groupe de monodromie
@article{AIF_2021__71_4_1325_0, author = {Farb, Benson and Looijenga, Eduard}, title = {Arithmeticity of the monodromy of the {Wiman{\textendash}Edge} pencil}, journal = {Annales de l'Institut Fourier}, pages = {1325--1361}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3423}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3423/} }
TY - JOUR AU - Farb, Benson AU - Looijenga, Eduard TI - Arithmeticity of the monodromy of the Wiman–Edge pencil JO - Annales de l'Institut Fourier PY - 2021 SP - 1325 EP - 1361 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3423/ DO - 10.5802/aif.3423 LA - en ID - AIF_2021__71_4_1325_0 ER -
%0 Journal Article %A Farb, Benson %A Looijenga, Eduard %T Arithmeticity of the monodromy of the Wiman–Edge pencil %J Annales de l'Institut Fourier %D 2021 %P 1325-1361 %V 71 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3423/ %R 10.5802/aif.3423 %G en %F AIF_2021__71_4_1325_0
Farb, Benson; Looijenga, Eduard. Arithmeticity of the monodromy of the Wiman–Edge pencil. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1325-1361. doi : 10.5802/aif.3423. http://www.numdam.org/articles/10.5802/aif.3423/
[1] Discreteness criterion for subgroups of products of , Transform. Groups, Volume 15 (2010) no. 3, pp. 503-515 | DOI | MR | Zbl
[2] Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Élements de Mathématique, Masson, 1981
[3] Coble fourfold, -invariant quartic threefolds, and Wiman-Edge sextics (2017) (https://arxiv.org/abs/1712.08906, to appear in Algebra Number Theory)
[4] Cremona groups and the icosahedron, Monographs and Research Notes in Mathematics, CRC Press, 2016
[5] Geometry of the Wiman Pencil. I: algebro-geometric aspects, Eur. J. Math., Volume 4 (2018) no. 3, pp. 879-930 | DOI | MR | Zbl
[6] A pencil of four-nodal plane sextics, Math. Proc. Camb. Philos. Soc., Volume 89 (1981), pp. 413-421 | DOI | MR | Zbl
[7] Geometry of the Wiman-Edge pencil and the Wiman curve, Geom. Dedicata, Volume 208 (2020), pp. 197-220 | DOI | MR | Zbl
[8] The Hilbert modular group for the field and the cubic diagonal surface of Clebsch and Klein, Usp. Mat. Nauk, Volume 31 (1976), pp. 153-166 English traslation in Russ. Math. Surveys 31 (2019), no. 5, p. 96-110 | MR | Zbl
[9] Ueber die algebraische Curven von den Geschlecht and welche eindeutige Transformationen in sich besitzen, Stockh. Akad. Bihang, Volume 21 (1895) no. 3, pp. 2-41
[10] Some remarks on the Wiman–Edge pencil, Proc. Edinb. Math. Soc., Volume 61 (2018) no. 2, pp. 401-412 | DOI | MR | Zbl
Cité par Sources :