Considérons trois opérateurs normaux sur un espace de Hilbert séparable ainsi que des mesures spectrales scalaires sur , sur et sur . Pour tout et pour tous , l’espace des opérateurs de Hilbert–Schmidt sur , nous donnons une définition générale d’une intégrale triple d’opérateurs appartenant à , de sorte que appartient à l’espace des opérateurs bilinéaires bornés sur , et l’application est une isométrie -continue. On montre alors qu’étant donnée une fonction , envoie dans , l’espace des opérateurs à trace sur , si et seulement si vérifie la propriété de factorisation suivante : il existe un espace de Hilbert et deux fonctions et tels que pour presque tout . Il s’agit de la version bilinéaire du Théorème de Peller caractérisant les applications d’intégrales doubles d’opérateurs envoyant dans . On établit en passant qu’étant donnés deux espaces de Banach séparables et , toute fonction -mesurable et essentiellement bornée à valeurs dans l’espace des opérateurs de dans se factorisant par un espace de Hilbert, admet une factorisation hilbertienne -mesurable.
Consider three normal operators on a separable Hilbert space as well as scalar-valued spectral measures on , on and on . For any and any , the space of Hilbert–Schmidt operators on , we provide a general definition of a triple operator integral belonging to in such a way that belongs to the space of bounded bilinear operators on , and the resulting mapping is a -continuous isometry. Then we show that a function has the property that maps into , the space of trace class operators on , if and only if it has the following factorization property: there exist a Hilbert space and two functions and such that for a.e. . This is a bilinear version of Peller’s Theorem characterizing double operator integral mappings . In passing we show that for any separable Banach spaces , any -measurable esssentially bounded function valued in the Banach space of operators from into factoring through Hilbert space admits a -measurable Hilbert space factorization.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Trace class, Triple operator integrals, Schur multipliers, Factorization through Hilbert space
Mot clés : Opérateurs à trace, Intégrales triples d’opérateurs, Multiplicateurs de Schur, Factorisation par un espace de Hilbert
@article{AIF_2021__71_4_1393_0, author = {Coine, Cl\'ement and Le Merdy, Christian and Sukochev, Fedor}, title = {When do triple operator integrals take value in the trace class?}, journal = {Annales de l'Institut Fourier}, pages = {1393--1448}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3422}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3422/} }
TY - JOUR AU - Coine, Clément AU - Le Merdy, Christian AU - Sukochev, Fedor TI - When do triple operator integrals take value in the trace class? JO - Annales de l'Institut Fourier PY - 2021 SP - 1393 EP - 1448 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3422/ DO - 10.5802/aif.3422 LA - en ID - AIF_2021__71_4_1393_0 ER -
%0 Journal Article %A Coine, Clément %A Le Merdy, Christian %A Sukochev, Fedor %T When do triple operator integrals take value in the trace class? %J Annales de l'Institut Fourier %D 2021 %P 1393-1448 %V 71 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3422/ %R 10.5802/aif.3422 %G en %F AIF_2021__71_4_1393_0
Coine, Clément; Le Merdy, Christian; Sukochev, Fedor. When do triple operator integrals take value in the trace class?. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1393-1448. doi : 10.5802/aif.3422. http://www.numdam.org/articles/10.5802/aif.3422/
[1] Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 723-728 | DOI | MR | Zbl
[2] Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals, Adv. Math., Volume 295 (2016), pp. 1-52 | DOI | MR | Zbl
[3] Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals, Bull. Lond. Math. Soc., Volume 49 (2017) no. 3, pp. 463-479 | DOI | MR | Zbl
[4] Operator integrals, spectral shift, and spectral flow, Can. J. Math., Volume 61 (2009) no. 2, pp. 241-263 | DOI | MR | Zbl
[5] Double Stieltjes operator integrals, Probl. Mat. Fiz., Volume 1 (1966), pp. 33-67
[6] Double Stieltjes operator integrals. II, Probl. Mat. Fiz., Volume 2 (1967), pp. 26-60
[7] Double Stieltjes operator integrals. III. Limit under the integral sign, Probl. Mat. Fiz., Volume 6 (1973), pp. 27-53
[8] Double operator integrals in a Hilbert space, Integral Equations Oper. Theory, Volume 47 (2003) no. 2, pp. 131-168 | DOI | MR
[9] Complete boundedness of multiple operator integrals (2019) (https://arxiv.org/abs/1908.07879, to appear in Canad. Math. Bull.)
[10] Perturbation theory and higher order -differentiability of operator functions (2019) (https://arxiv.org/abs/1906.05585)
[11] Peller’s problem concerning Koplienko–Neidhardt trace formulae: the unitary case, J. Funct. Anal., Volume 271 (2016) no. 7, pp. 1747-1763 | DOI | MR | Zbl
[12] Resolution of Peller’s problem concerning Koplienko–Neidhardt trace formulae, Proc. Lond. Math. Soc., Volume 113 (2016) no. 2, pp. 113-139 | DOI | MR | Zbl
[13] Higher order -differentiability and application to Koplienko trace formula, J. Funct. Anal., Volume 276 (2019) no. 10, pp. 3170-3204 | DOI | MR | Zbl
[14] A course in operator theory, Graduate Studies in Mathematics, 21, American Mathematical Society, 2000
[15] Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations, Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal., Volume 56 (1956) no. 1, pp. 81-105 | MR
[16] -algebras by example, Fields Institute Monographs, 6, American Mathematical Society, 1996
[17] Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, 1995 | DOI
[18] Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977 | DOI
[19] Linear operations on summable functions, Trans. Am. Math. Soc., Volume 47 (1940), pp. 323-392 | DOI | MR | Zbl
[20] Multivariable multipliers for groups and their operator algebras, Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988) (Proceedings of Symposia in Pure Mathematics), Volume 51, American Mathematical Society, 1990, pp. 197-218 | MR | Zbl
[21] Decomposition of completely bounded maps on operator algebras (1980) (unpublished preprint, Odense University, Denmark)
[22] Means of Hilbert space operators, Lecture Notes in Mathematics, 1820, Springer, 2003 | DOI
[23] Singular bilinear integrals in quantum physics, Mathematics, Volume 3 (2015) no. 3, pp. 563-603 | DOI | Zbl
[24] Multidimensional operator multipliers, Trans. Am. Math. Soc., Volume 361 (2009) no. 9, pp. 4683-4720 | DOI | MR | Zbl
[25] Higher order differentiability of operator functions in Schatten norms, J. Inst. Math. Jussieu, Volume 19 (2020) no. 6, pp. 1993-2016 | DOI | MR | Zbl
[26] Multidimensional operator integrals, Probl. Mat. Anal., Volume 2 (1969), pp. 99-122
[27] -algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., 1979
[28] Hankel operators in the theory of perturbations of unitary and selfadjoint operators, Funkts. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 | MR
[29] Multiple operator integrals and higher operator derivatives, J. Funct. Anal., Volume 233 (2006) no. 2, pp. 515-544 | DOI | MR | Zbl
[30] Multiple operator integrals in perturbation theory, Bull. Math. Sci., Volume 6 (2016) no. 1, pp. 15-88 | DOI | MR | Zbl
[31] Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, 60, American Mathematical Society, 1986 | DOI
[32] Similarity problems and completely bounded maps, Lecture Notes in Mathematics, 1618, Springer, 1996 | DOI | MR
[33] Grothendieck’s theorem, past and present, Bull. Am. Math. Soc., Volume 49 (2012) no. 2, pp. 237-323 | DOI | MR | Zbl
[34] Spectral shift function of higher order, Invent. Math., Volume 193 (2013) no. 3, pp. 501-538 | DOI | MR | Zbl
[35] Multilinear Schur multipliers and Schatten properties of operator Taylor remainders, Adv. Math., Volume 320 (2017), pp. 1063-1098 | DOI | MR | Zbl
[36] Methods of modern mathematical physics. I Functional analysis, Academic Press Inc., 1980
[37] Functional analysis, McGraw-Hill, 1973 (McGraw-Hill Series in Higher Mathematics)
[38] Multilinear operator integrals, Lecture Notes in Mathematics, 2250, Springer, 2019 (Theory and applications) | DOI
[39] Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proc. Lond. Math. Soc., Volume 89 (2004) no. 1, pp. 161-192 | DOI | MR | Zbl
Cité par Sources :