Dans ce travail, on donne des conditions utilisables et explicites pour que des multiplicateurs linéaires et multilinéaires de type Coifman-Meyer, des sommes de produits d’opérateurs de Calderon-Zygmund, et aussi des opérateurs de type intermédiaire, soient bornés de produits d’espaces de Lebesgue ou de Hardy dans un espace de Hardy. Ces conditions affirment que les symboles des multiplicateurs
et leurs dérivées s’annulent sur l’hyperplan .
In the present work we find useful and explicit necessary and sufficient conditions for linear and multilinear multiplier operators of Coifman–Meyer type, finite sum of products of Calderón–Zygmund operators, and also of intermediate types to be bounded from a product of Lebesgue or Hardy spaces into a Hardy space. These conditions state that the symbols of the multipliers
and their derivatives vanish on the hyperplane .
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: multiplier, multilinear, Hardy spaces
Mot clés : multiplicateur, multilineaire, espaces de Hardy
@article{AIF_2021__71_3_1047_0, author = {Grafakos, Loukas and Nakamura, Shohei and Nguyen, Hanh Van and Sawano, Yoshihiro}, title = {Multiplier conditions for {Boundedness} into {Hardy} spaces}, journal = {Annales de l'Institut Fourier}, pages = {1047--1064}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3416}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3416/} }
TY - JOUR AU - Grafakos, Loukas AU - Nakamura, Shohei AU - Nguyen, Hanh Van AU - Sawano, Yoshihiro TI - Multiplier conditions for Boundedness into Hardy spaces JO - Annales de l'Institut Fourier PY - 2021 SP - 1047 EP - 1064 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3416/ DO - 10.5802/aif.3416 LA - en ID - AIF_2021__71_3_1047_0 ER -
%0 Journal Article %A Grafakos, Loukas %A Nakamura, Shohei %A Nguyen, Hanh Van %A Sawano, Yoshihiro %T Multiplier conditions for Boundedness into Hardy spaces %J Annales de l'Institut Fourier %D 2021 %P 1047-1064 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3416/ %R 10.5802/aif.3416 %G en %F AIF_2021__71_3_1047_0
Grafakos, Loukas; Nakamura, Shohei; Nguyen, Hanh Van; Sawano, Yoshihiro. Multiplier conditions for Boundedness into Hardy spaces. Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 1047-1064. doi : 10.5802/aif.3416. http://www.numdam.org/articles/10.5802/aif.3416/
[1] Bilinear singular integral operators, smooth atoms and molecules, J. Fourier Anal. Appl., Volume 9 (2003) no. 3, pp. 301-319 | DOI | MR | Zbl
[2] The bilinear Bochner-Riesz problem, J. Anal. Math., Volume 127 (2015), pp. 179-217 | DOI | MR | Zbl
[3] Hardy space estimates for multilinear operators, I, Rev. Mat. Iberoam., Volume 8 (1992) no. 1, pp. 45-67 | DOI | Zbl
[4] Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993) no. 3, pp. 247-286 | MR
[5] Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier, Volume 28 (1978) no. 3, pp. 177-202 | DOI | Zbl
[6] Ondelettes, renormalisations du produit et applications à certains opérateurs bilinéaires, Ph. D. Thesis, Université de Paris 9 (France) (1992)
[7] Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies, 116, North-Holland, 1985 | Zbl
[8] Hardy space estimates for multilinear operators, II, Rev. Mat. Iberoam., Volume 8 (1992) no. 1, pp. 69-92 | DOI | MR | Zbl
[9] The Marcinkiewicz multiplier condition for bilinear operators, Stud. Math., Volume 146 (2001) no. 2, pp. 115-156 | DOI | MR | Zbl
[10] Multilinear Calderón–Zygmund operators on Hardy spaces, Collect. Math., Volume 52 (2001) no. 2, pp. 169-179 | Zbl
[11] Bilinear operators on homogeneous groups, J. Oper. Theory, Volume 44 (2000) no. 1, pp. 63-90 | MR | Zbl
[12] Conditions for Boundedness into Hardy Spaces, Math. Nachr., Volume 292 (2019), pp. 2383-2410 | DOI | MR | Zbl
[13] Discrete decompositions for bilinear operators and almost diagonal conditions, Trans. Am. Math. Soc., Volume 354 (2002) no. 3, pp. 1153-1176 | DOI | MR | Zbl
[14] Multilinear Calderón–Zygmund theory, Adv. Math., Volume 165 (2002) no. 1, pp. 124-164 | DOI | Zbl
[15] On weak convergence in , Proc. Am. Math. Soc., Volume 120 (1994) no. 1, pp. 137-138 | Zbl
[16] Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993
Cité par Sources :