On montre que le groupe de Cremona du plan réel est un produit amalgamé non-trivial de deux groupes le long de leur intersection et on donne une preuve alternative de son abélianisation.
We show that the real Cremona group of the plane is a non-trivial amalgam of two groups amalgamated along their intersection and give an alternative proof of its abelianisation.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Cremona groups, amalgamated product
Mot clés : Groupe de Cremona, produit amalgamé
@article{AIF_2021__71_3_1023_0, author = {Zimmermann, Susanna}, title = {The real plane {Cremona} group is an amalgamated product}, journal = {Annales de l'Institut Fourier}, pages = {1023--1045}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3415}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3415/} }
TY - JOUR AU - Zimmermann, Susanna TI - The real plane Cremona group is an amalgamated product JO - Annales de l'Institut Fourier PY - 2021 SP - 1023 EP - 1045 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3415/ DO - 10.5802/aif.3415 LA - en ID - AIF_2021__71_3_1023_0 ER -
%0 Journal Article %A Zimmermann, Susanna %T The real plane Cremona group is an amalgamated product %J Annales de l'Institut Fourier %D 2021 %P 1023-1045 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3415/ %R 10.5802/aif.3415 %G en %F AIF_2021__71_3_1023_0
Zimmermann, Susanna. The real plane Cremona group is an amalgamated product. Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 1023-1045. doi : 10.5802/aif.3415. http://www.numdam.org/articles/10.5802/aif.3415/
[1] Simple relations in the Cremona group, Proc. Am. Math. Soc., Volume 140 (2012) no. 5, pp. 1495-1500 | DOI | MR | Zbl
[2] Quotients of higher dimensional Cremona groups (2019) to be published in Acta Mathematica, volume 226 (2021), issue 2, https://arxiv.org/abs/1901.04145
[3] Cremona groups of real surfaces, Automorphisms in birational and affine geometry (Springer Proceedings in Mathematics & Statistics), Volume 79, Springer, 2014, pp. 35-58 (Papers based on the presentations at the conference, Levico Terme, Italy, October 29 – November 3, 2012) | MR | Zbl
[4] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | DOI | MR | Zbl
[5] Le trasformazioni generatrici del gruppo cremoniano nel piano, Torino Atti (1901) no. 36, pp. 861-874 | Zbl
[6] Factoring birational maps of threefolds after Sarkisov, J. Algebr. Geom., Volume 4 (1995) no. 2, pp. 223-254 | MR | Zbl
[7] The Sarkisov program, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 389-405 | DOI | MR | Zbl
[8] Proof of a theorem on relations in the two-dimensional Cremona group, Usp. Mat. Nauk, Volume 40 (1985) no. 5(245), pp. 255-256 | MR | Zbl
[9] Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Usp. Mat. Nauk, Volume 51 (1996) no. 4(310), pp. 3-72 | MR | Zbl
[10] Groupes de transformations birationnelles de surfaces, 2010 (Mémoire d’habilitation à diriger des recherches, Université Claude Bernard Lyon 1, France)
[11] Signature morphisms from the Cremona group over a non-closed field, J. Eur. Math. Soc., Volume 22 (2020) no. 10, pp. 3133-3173 | DOI | MR | Zbl
[12] Infinite algebraic subgroups of the real Cremona group, Osaka J. Math., Volume 55 (2018) no. 4, pp. 681-712 | MR | Zbl
[13] Birational diffeomorphisms of the real projective plane, Comment. Math. Helv., Volume 80 (2005) no. 3, pp. 517-540 | MR | Zbl
[14] Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math., Volume 327 (1981), pp. 12-80 | Zbl
[15] Trees, Springer Monographs in Mathematics, Springer, 2003 (Translated from the French original by John Stillwell) | Zbl
[16] Two-dimensional Cremona groups acting on simplicial complexes, Trans. Am. Math. Soc., Volume 331 (1992) no. 1, pp. 281-300 | DOI | MR | Zbl
[17] Subgroups of odd order in the real plane Cremona group, J. Algebra, Volume 461 (2016), pp. 87-120 | DOI | MR | Zbl
[18] The abelianisation of the real Cremona group, Duke Math. J., Volume 167 (2018) no. 2, pp. 211-267 | MR | Zbl
Cité par Sources :