K3 surfaces with maximal finite automorphism groups containing M 20
[Surfaces K3 avec un groupe fini d’automorphismes maximal contenant M 20 ]
Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 711-730.

Mukai a montré que l’ordre maximal d’un groupe fini agissant fidèlement et symplectiquement sur une surface K3 est 960 et que, si un tel groupe a pour ordre 960, alors il est isomorphe au groupe de Mathieu M 20 . Kondo a ensuite montré que l’ordre maximal d’un groupe fini agissant fidèlement sur une K3 surface est 3840 et qu’un tel groupe contient M 20 comme sous-groupe d’indice 4. Kondo a aussi montré qu’il existe une unique surface K3 sur laquelle ce groupe agit fidèlement : c’est la surface de Kummer Km(E i ×E i ). Dans cet article, nous décrivons deux autres surfaces K3 admettant un groupe fini d’automorphismes d’ordre 1920, ces deux groupes et ces deux surfaces K3 étant uniques. Ce résultat a été obtenu indépendamment par S. Brandhorst and K. Hashimoto dans un article à venir, dont le but est de classifier les groupes finis agissant fidèlement sur des K3 surfaces et dont la partie symplectique est maximale.

It was shown by Mukai that the maximum order of a finite group acting faithfully and symplectically on a K3 surface is 960 and that if such a group has order 960, then it is isomorphic to the Mathieu group M 20 . Then Kondo showed that the maximum order of a finite group acting faithfully on a K3 surface is 3840 and this group contains M 20 with index four. Kondo also showed that there is a unique K3 surface on which this group acts faithfully, which is the Kummer surface Km(E i ×E i ). In this paper we describe two more K3 surfaces admitting a big finite automorphism group of order 1920, both groups contains M 20 as a subgroup of index 2. We show moreover that these two groups and the two K3 surfaces are unique. This result was shown independently by S. Brandhorst and K. Hashimoto in a forthcoming paper, with the aim of classifying all the finite groups acting faithfully on K3 surfaces with maximal symplectic part.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3411
Classification : 14J28, 14J40, 14J10
Keywords: K3 surfaces, automorphisms
Mot clés : Surfaces K3, automorphismes
Bonnafé, Cédric 1 ; Sarti, Alessandra 2

1 IMAG, Université de Montpellier, CNRS, Montpellier (France)
2 Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Université de Poitiers (France)
@article{AIF_2021__71_2_711_0,
     author = {Bonnaf\'e, C\'edric and Sarti, Alessandra},
     title = {K3 surfaces with maximal finite automorphism groups containing $M_{20}$},
     journal = {Annales de l'Institut Fourier},
     pages = {711--730},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.5802/aif.3411},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.3411/}
}
TY  - JOUR
AU  - Bonnafé, Cédric
AU  - Sarti, Alessandra
TI  - K3 surfaces with maximal finite automorphism groups containing $M_{20}$
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 711
EP  - 730
VL  - 71
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.3411/
DO  - 10.5802/aif.3411
LA  - en
ID  - AIF_2021__71_2_711_0
ER  - 
%0 Journal Article
%A Bonnafé, Cédric
%A Sarti, Alessandra
%T K3 surfaces with maximal finite automorphism groups containing $M_{20}$
%J Annales de l'Institut Fourier
%D 2021
%P 711-730
%V 71
%N 2
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.3411/
%R 10.5802/aif.3411
%G en
%F AIF_2021__71_2_711_0
Bonnafé, Cédric; Sarti, Alessandra. K3 surfaces with maximal finite automorphism groups containing $M_{20}$. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 711-730. doi : 10.5802/aif.3411. http://www.numdam.org/articles/10.5802/aif.3411/

[1] Barth, Wolf; Peters, Christiaan; Van de Ven, Antonius Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer, 1984, 304 pages | DOI | Zbl

[2] Bosma, Wieb; Cannon, John; Playoust, Catherine The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl

[3] Brandhost, Simon; Hashimoto, Kenji On K3 surfaces with maximal symplectic action (2019) (https://arxiv.org/abs/1910.05952, to appear in Ann. Henri Lebesgue)

[4] Broué, Michel; Malle, Gunter; Michel, Jean Towards spetses. I, Transform. Groups, Volume 4 (1999) no. 2-3, pp. 157-218 | DOI | MR | Zbl

[5] Dolgachev, Igor V. Quartic surfaces with icosahedral symmetry, Adv. Geom., Volume 18 (2018) no. 1, pp. 119-132 | DOI | MR | Zbl

[6] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[7] Huybrechts, Daniel Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, Cambridge University Press, 2016, xi+485 pages | DOI | Zbl

[8] Inose, Hiroshi On certain Kummer surfaces which can be realized as non-singular quartic surfaces in 3 , J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 23 (1976) no. 3, pp. 545-560 | MR | Zbl

[9] Kondō, Shigeyuki The maximum order of finite groups of automorphisms of K3 surfaces, Am. J. Math., Volume 121 (1999) no. 6, pp. 1245-1252 | DOI | MR | Zbl

[10] Matsumura, Hideyuki; Monsky, Paul On the automorphisms of hypersurfaces, J. Math. Kyoto Univ., Volume 3 (1964), pp. 347-361 | DOI | MR | Zbl

[11] Mukai, Shigeru Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., Volume 94 (1988) no. 1, pp. 183-221 | DOI | MR | Zbl

[12] Nikulin, Vyacheslav V. Finite groups of automorphisms of Kählerian surfaces of type K3, Usp. Mat. Nauk, Volume 31 (1976) no. 2(188), pp. 223-224

[13] Nikulin, Vyacheslav V. Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 43 (1979) no. 1, pp. 111-177 | MR

[14] Orlik, Peter; Solomon, Louis Singularities. II. Automorphisms of forms, Math. Ann., Volume 231 (1978) no. 3, pp. 229-240 | DOI | MR | Zbl

[15] Shephard, Geoffrey C.; Todd, John A. Finite unitary reflection groups, Can. J. Math., Volume 6 (1954), pp. 274-304 | DOI | MR | Zbl

[16] Shioda, Tetsuji; Inose, Hiroshi On singular K3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, 1977, pp. 119-136 | DOI | Zbl

[17] Shioda, Tetsuji; Mitani, Naoki Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds (Lecture Notes in Mathematics), Volume 412, Springer, 1974, pp. 259-287 | DOI | MR | Zbl

[18] Xiao, Gang Galois covers between K3 surfaces, Ann. Inst. Fourier, Volume 46 (1996) no. 1, pp. 73-88 | DOI | Numdam | MR | Zbl

Cité par Sources :