Slant products on the Higson–Roe exact sequence
[Slant-produits sur la suite exacte de Higson–Roe]
Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 913-1021.

Nous construisons un slant-produit /:S p (X×Y)×K 1-q (𝔠 red Y)S p-q (X) sur le groupe structural analytique de Higson et de Roe et la K-théorie de la « stable Higson corona » d’Emerson et de Meyer. Cette dernière est le domaine de définition de l’application de coassemblage μ * :K 1-* (𝔠 red Y)K * (Y). Nous obtenons ces produits sur toute la suite exacte de Higson–Roe. Ils impliquent que certaines applications produits extérieurs sont injectives. Nos résultats s’appliquent aux produits avec des variétés asphériques dont les groupes fondamentaux se plongent de manière coarse dans un espace de Hilbert. Nous disons qu’une spin c -variété complète est « Higson-essential » si sa classe fondamentale est détectée par l’application de coassemblage. Nous prouvons que les variétés qui sont hyper-euclidiennes coarse sont « Higson-essential » . Nous déduisons des résultats pour des métriques à courbure scalaire positive sur les espaces produits, en particulier sur les espaces non-compacts. En outre, nous donnons des variantes équivariantes de nos constructions et nous discutons l’exactitude et la moyennabilité de la « stable Higson corona » .

We construct a slant product /:S p (X×Y)×K 1-q (𝔠 red Y)S p-q (X) on the analytic structure group of Higson and Roe and the K-theory of the stable Higson corona of Emerson and Meyer. The latter is the domain of the co-assembly map μ * :K 1-* (𝔠 red Y)K * (Y). We obtain such products on the entire Higson–Roe sequence. They imply injectivity results for external product maps. Our results apply to products with aspherical manifolds whose fundamental groups admit coarse embeddings into Hilbert space. To conceptualize the class of manifolds where this method applies, we say that a complete spin c -manifold is Higson-essential if its fundamental class is detected by the co-assembly map. We prove that coarsely hypereuclidean manifolds are Higson-essential. We draw conclusions for positive scalar curvature metrics on product spaces, particularly on non-compact manifolds. We also obtain equivariant versions of our constructions and discuss related problems of exactness and amenability of the stable Higson corona.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3406
Classification : 58J22, 19K33, 46L80, 51F30
Keywords: Analytic structure group, K-homology, slant products, assembly maps, exact groups, Higson corona, Novikov conjecture, positive scalar curvature
Mot clés : groupe structural analytique, K-homologie, slant-produits, applications d’assemblage, groupes exacts, Higson corona, conjecture de Novikov, courbure scalaire positive
Engel, Alexander 1 ; Wulff, Christopher 2 ; Zeidler, Rudolf 3

1 Fakultät für Mathematik Universität Regensburg 93040 Regensburg Germany
2 Mathematisches Institut Georg–August–Universität Göttingen Bunsenstr. 3–5 37073 Göttingen Germany
3 Mathematisches Institut Westfälische Wilhelms–Universität Münster Einsteinstr. 62 48149 Münster Germany
@article{AIF_2021__71_3_913_0,
     author = {Engel, Alexander and Wulff, Christopher and Zeidler, Rudolf},
     title = {Slant products on the {Higson{\textendash}Roe} exact sequence},
     journal = {Annales de l'Institut Fourier},
     pages = {913--1021},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {3},
     year = {2021},
     doi = {10.5802/aif.3406},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.3406/}
}
TY  - JOUR
AU  - Engel, Alexander
AU  - Wulff, Christopher
AU  - Zeidler, Rudolf
TI  - Slant products on the Higson–Roe exact sequence
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 913
EP  - 1021
VL  - 71
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.3406/
DO  - 10.5802/aif.3406
LA  - en
ID  - AIF_2021__71_3_913_0
ER  - 
%0 Journal Article
%A Engel, Alexander
%A Wulff, Christopher
%A Zeidler, Rudolf
%T Slant products on the Higson–Roe exact sequence
%J Annales de l'Institut Fourier
%D 2021
%P 913-1021
%V 71
%N 3
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.3406/
%R 10.5802/aif.3406
%G en
%F AIF_2021__71_3_913_0
Engel, Alexander; Wulff, Christopher; Zeidler, Rudolf. Slant products on the Higson–Roe exact sequence. Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 913-1021. doi : 10.5802/aif.3406. http://www.numdam.org/articles/10.5802/aif.3406/

[1] Anantharaman-Delaroche, Claire Systèmes dynamiques non commutatifs et moyenabilité, Math. Ann., Volume 279 (1987) no. 1-2, pp. 297-315 | DOI | MR | Zbl

[2] Anantharaman-Delaroche, Claire Amenability and exactness for dynamical systems and their C*-algebras, Trans. Am. Math. Soc., Volume 354 (2002) no. 10, pp. 4153-4178 | DOI | MR | Zbl

[3] Arens, Richard The adjoint of a bilinear operation, Proc. Am. Math. Soc., Volume 2 (1951), pp. 839-848 | DOI | MR | Zbl

[4] Arens, Richard Operations Induced in Function Classes, Monatsh. Math., Volume 55 (1951), pp. 1-19 | DOI | MR | Zbl

[5] Bárcenas, Noé; Zeidler, Rudolf Positive scalar curvature and low-degree group homology, Ann. K-Theory, Volume 3 (2018) no. 3, pp. 565-579 | DOI | MR | Zbl

[6] Baum, Paul; Connes, Alain; Higson, Nigel Classifying space for proper actions and K-theory of group C * -algebras, Contemp. Math., Volume 167 (1994), pp. 241-291 | DOI | MR | Zbl

[7] Baum, Paul; Guentner, Erik; Willett, Rufus Expanders, exact crossed products, and the Baum-Connes conjecture, Ann. K-Theory, Volume 1 (2016) no. 2, pp. 155-208 | DOI | MR | Zbl

[8] Baum, Paul; Higson, Nigel; Schick, Thomas A geometric description of equivariant K-homology for proper actions, Quanta of maths. Conference on non commutative geometry in honor of Alain Connes, Paris, France, March 29–April 6, 2007, American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute, 2010, pp. 1-22 | Zbl

[9] Blackadar, Bruce E. K-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, Cambridge University Press, 1998 | DOI | MR | Zbl

[10] Blackadar, Bruce E. Operator Algebras, Theory of C*-Algebras and von Neumann Algebras, Encyclopaedia of Mathematical Sciences, Vol. 122, Operator Algebras and Non-Commutative Geometry III, Springer, 2006 | DOI | Zbl

[11] Blecher, David P.; Le Merdy, Christian Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, 30, Oxford Science Publications, Oxford University Press, 2004 | DOI | MR | Zbl

[12] Boersema, Jeffrey L. Real C * -algebras, united K-theory, and the Künneth formula, K-Theory, Volume 26 (2002) no. 4, pp. 345-402 | DOI | MR | Zbl

[13] Brodzki, Jacek; Niblo, Graham A.; Wright, Nick J. Property A, partial translation structures, and uniform embeddings in groups, J. Lond. Math. Soc., Volume 76 (2007) no. 2, pp. 479-497 | DOI | MR | Zbl

[14] Brown, Nathanial P.; Ozawa, Narutaka C * -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008 | DOI | MR | Zbl

[15] Brunnbauer, Michael; Hanke, Bernhard Large and small group homology, J. Topol., Volume 3 (2010) no. 2, pp. 463-486 | DOI | MR | Zbl

[16] Bunke, Ulrich; Engel, Alexander Homotopy theory with bornological coarse spaces, Springer Lecture Notes Mathematics Series, 2269, Springer, 2016, pp. vii-245 | Zbl

[17] Bunke, Ulrich; Engel, Alexander Coarse assembly maps, J. Noncommut. Geom., Volume 14 (2017) no. 4, pp. 1245-1303 | DOI | MR | Zbl

[18] Buss, Alcides; Echterhoff, Siegfried; Willett, Rufus Exotic crossed products and the Baum–Connes conjecture, J. reine angew. Math., Volume 740 (2018), p. 111--159 | DOI | MR | Zbl

[19] Buss, Alcides; Echterhoff, Siegfried; Willett, Rufus The Minimal Exact Crossed Product, Doc. Math., Volume 23 (2018), pp. 2043-2077 | DOI | MR | Zbl

[20] Buss, Alcides; Echterhoff, Siegfried; Willett, Rufus Injectivity, crossed products, and amenable group actions, K-theory in algebra, analysis and topology (Contemporary Mathematics), Volume 749, American Mathematical Society, 2020, pp. 105-137 | DOI | MR | Zbl

[21] Chabert, Jérôme; Echterhoff, Siegfried; Oyono-Oyono, Hervé Going-down functors, the Künneth formula, and the Baum–Connes conjecture, Geom. Funct. Anal., Volume 14 (2004) no. 3, pp. 491-528 | DOI | Zbl

[22] Dadarlat, Marius; Willett, Rufus; Wu, Jianchao Localization C * -algebras and K-theoretic duality, Ann. K-Theory, Volume 3 (2018) no. 4, pp. 615-630 | DOI | MR | Zbl

[23] Deeley, Robin J.; Goffeng, Magnus Realizing the analytic surgery group of Higson and Roe geometrically, part I: the geometric model, J. Homotopy Relat. Struct., Volume 12 (2017) no. 1, pp. 109-142 | DOI | MR | Zbl

[24] Dranishnikov, Alexander N. On Hypereuclidean Manifolds, Geom. Dedicata, Volume 117 (2006), pp. 215-231 | DOI | MR | Zbl

[25] Ebert, Johannes; Randal-Williams, Oscar Infinite loop spaces and positive scalar curvature in the presence of a fundamental group, Geom. Topol., Volume 23 (2019) no. 3, pp. 1549-1610 | DOI | MR | Zbl

[26] Echterhoff, Siegfried Bivariant KK-Theory and the Baum–Connes Conjecure, K-Theory for Group C*-Algebras and Semigroup C*-Algebras (Cuntz, Joachim; Echterhoff, Siegfried; Li, Xin; Yu, Guoliang, eds.) (Oberwolfach Seminars), Springer, 2017, pp. 81-147 | DOI | Zbl

[27] Emerson, Heath; Meyer, Ralf Dualizing the coarse assembly map, J. Inst. Math. Jussieu, Volume 5 (2006) no. 2, pp. 161-186 | DOI | MR | Zbl

[28] Emerson, Heath; Meyer, Ralf A descent principle for the Dirac–dual-Dirac method, Topology, Volume 46 (2007), pp. 185-209 | DOI | MR | Zbl

[29] Emerson, Heath; Meyer, Ralf Coarse and equivariant co-assembly maps, K-theory and noncommutative geometry (EMS Series of Congress Reports), European Mathematical Society, 2008, pp. 71-89 | DOI | MR | Zbl

[30] Engel, Alexander; Wulff, Christopher Coronas for properly combable spaces (2017) (https://arxiv.org/abs/1711.06836)

[31] Gromov, Mikhael Geometric group theory. Volume 2: Asymptotic invariants of infinite groups. Proceedings of the symposium held at the Sussex University, Brighton, July 14-19, 1991, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993 | MR | Zbl

[32] Gromov, Mikhael; Lawson, H. Blaine jun. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci., Volume 58 (1983), pp. 83-196 | DOI | Numdam | Zbl

[33] Guentner, Erik; Higson, Nigel Group C * -algebras and K-theory, Noncommutative geometry (Lecture Notes in Mathematics), Volume 1831, Springer, 2004, pp. 137-251 | DOI | MR | Zbl

[34] Guentner, Erik; Higson, Nigel; Trout, Jody Equivariant E-theory for C * -algebras, Mem. Am. Math. Soc., Volume 148 (2000) no. 703, pp. 797-803 | DOI | MR | Zbl

[35] Hanke, Bernhard; Pape, Daniel; Schick, Thomas Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier, Volume 65 (2015) no. 6, pp. 2681-2710 | DOI | Numdam | MR | Zbl

[36] Higson, Nigel; Kasparov, Gennadi E-theory and KK-theory for groups which act properly and isometrically on Hilbert spaces, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74 | DOI | MR | Zbl

[37] Higson, Nigel; Pedersen, Erik K.; Roe, John C * -algebras and controlled topology, K-Theory, Volume 11 (1997) no. 3, pp. 209-239 | DOI | MR | Zbl

[38] Higson, Nigel; Roe, John A homotopy invariance theorem in coarse cohomology and K-theory, Trans. Am. Math. Soc., Volume 345 (1994) no. 1, pp. 347-365 | DOI | MR | Zbl

[39] Higson, Nigel; Roe, John Amenable group actions and the Novikov conjecture, J. reine angew. Math. (Crelles Journal), Volume 519 (2000), pp. 143-153 | DOI | MR | Zbl

[40] Higson, Nigel; Roe, John Analytic K-homology, Oxford Mathematical Monographs, Oxford University Press, 2000 | MR | Zbl

[41] Higson, Nigel; Roe, John Mapping Surgery to Analysis III: Exact Sequences, K-Theory, Volume 33 (2004) no. 4, pp. 325-346 | DOI | MR | Zbl

[42] Lafforgue, Vincent La conjecture de Baum–Connes à coefficients pour les groupes hyperboliques, J. Noncommut. Geom., Volume 6 (2012) no. 1, pp. 1-197 | DOI | MR | Zbl

[43] Land, Markus On the relation between K- and L-theory of complex C*-Algebras, Ph. D. Thesis, Universität Bonn, Germany (2016)

[44] Meintrup, David; Schick, Thomas A model for the universal space for proper actions of a hyperbolic group, New York J. Math., Volume 8 (2002), pp. 1-7 http://nyjm.albany.edu:8000/j/2002/8_1.html | MR | Zbl

[45] Meyer, Ralf; Nest, Ryszard The Baum–Connes conjecture via localisations of categories, Topology, Volume 45 (2006), pp. 209-259 | DOI | MR | Zbl

[46] Murphy, Gerard J. C * -Algebras and Operator Theory, Academic Press Inc., 1990 | Zbl

[47] Nowak, Piotr W.; Yu, G. Large Scale Geometry, EMS Textbooks in Mathematics, European Mathematical Society, 2012 | DOI | Zbl

[48] Piazza, Paolo; Schick, Thomas Rho-classes, index theory and Stolz’ positive scalar curvature sequence, J. Topol., Volume 7 (2014) no. 4, pp. 965-1004 | DOI | MR | Zbl

[49] Piazza, Paolo; Schick, Thomas The surgery exact sequence, K-theory and the signature operator, Ann. K-Theory, Volume 1 (2016) no. 2, pp. 109-154 | DOI | MR | Zbl

[50] Piazza, Paolo; Zenobi, Vito Felice Singular spaces, groupoids and metrics of positive scalar curvature, J. Geom. Phys., Volume 137 (2019), pp. 87-123 | DOI | MR | Zbl

[51] Puschnigg, Michael The Baum–Connes conjecture with coefficients for word-hyperbolic groups (after Vincent Lafforgue)., Séminaire Bourbaki. Volume 2012/2013. Exposés 1059–1073. Avec table par noms d’auteurs de 1948/49 à 2012/13, Société Mathématique de France, 2014, p. 115-148, ex | MR | Zbl

[52] Qiao, Yu; Roe, John On the localization algebra of Guoliang Yu, Forum Math., Volume 22 (2010) no. 4, pp. 657-665 | DOI | MR | Zbl

[53] Roe, John Index Theory, Coarse Geometry, and Topology of Manifolds, Regional Conference Series in Mathematics, 90, American Mathematical Society, 1996 | DOI | MR | Zbl

[54] Roe, John Hyperbolic Groups Have Finite Asymptotic Dimension, Proc. Am. Math. Soc., Volume 133 (2005) no. 9, pp. 2489-2490 | DOI | MR | Zbl

[55] Stolz, Stephan Concordance classes of positive scalar curvature metrics, 1998 (http://www3.nd.edu/~stolz/concordance.ps)

[56] Tu, Jean-Louis. La conjecture de Baum–Connes pour les feuilletages moyennables, K-Theory, Volume 17 (1999), pp. 215-264 | DOI | MR | Zbl

[57] Weinberger, Shmuel; Xie, Zhizhang; Yu, Guoliang Additivity of higher rho invariants and nonrigidity of topological manifolds (2016) (https://arxiv.org/abs/1608.03661, to appear in Communications on Pure and Applied Mathematics)

[58] Weinberger, Shmuel; Yu, Guoliang Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol., Volume 19 (2015) no. 5, pp. 2767-2799 | DOI | MR | Zbl

[59] Willett, Rufus Some “homological” properties of the stable Higson corona, J. Noncommut. Geom., Volume 7 (2013) no. 1, pp. 203-220 | DOI | MR | Zbl

[60] Willett, Rufus; Yu, Guoliang Higher Index Theory, Cambridge Studies in Advanced Mathematics, 189, Cambridge University Press, 2020 | DOI | Zbl

[61] Williams, Dana P. Crossed products of C * -algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, 2007 | DOI | MR | Zbl

[62] Wulff, Christopher Coarse indices of twisted operators, J. Topol. Anal., Volume 11 (2019) no. 4, pp. 823-873 | DOI | MR | Zbl

[63] Xie, Zhizhang; Yu, Guoliang Positive scalar curvature, higher rho invariants and localization algebras, Adv. Math., Volume 262 (2014), pp. 823-866 | DOI | MR | Zbl

[64] Xie, Zhizhang; Yu, Guoliang; Zeidler, Rudolf On the range of the relative higher index and the higher rho-invariant for positive scalar curvature (2017) (https://arxiv.org/abs/1712.03722)

[65] Yu, Guoliang Localization algebras and the coarse Baum–Connes conjecture, K-Theory, Volume 11 (1997) no. 4, pp. 307-318 | DOI | MR | Zbl

[66] Zeidler, Rudolf Positive scalar curvature and product formulas for secondary index invariants, J. Topol., Volume 9 (2016) no. 3, pp. 687-724 | DOI | MR | Zbl

[67] Zeidler, Rudolf Secondary large-scale index theory and positive scalar curvature, Ph. D. Thesis, University of Göttingen, Germany (2016) (http://hdl.handle.net/11858/00-1735-0000-0028-8826-7) | Zbl

[68] Zenobi, Vito Felice Mapping the surgery exact sequence for topological manifolds to analysis, J. Topol. Anal., Volume 9 (2017) no. 2, pp. 329-361 | DOI | MR | Zbl

Cité par Sources :