Nous montrons que toute composante irréductible de la variété des points fixes sous l’action de dans un espace de Calogero–Moser lisse est isomorphe à un espace de Calogero–Moser associé à un autre groupe de réflexions.
We prove that every irreducible component of the fixed point variety under the action of in a smooth Calogero–Moser space is isomorphic to a Calogero–Moser space associated with another reflection group.
Révisé le :
Accepté le :
Publié le :
Keywords: reflection groups, Calogero–Moser spaces, fixed points, quiver varieties
Mot clés : groupes de réflexions, espaces de Calogero–Moser, points fixes, variétés de carquois
@article{AIF_2021__71_2_643_0, author = {Bonnaf\'e, C\'edric and Maksimau, Ruslan}, title = {Fixed points in smooth {Calogero{\textendash}Moser} spaces}, journal = {Annales de l'Institut Fourier}, pages = {643--678}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {2}, year = {2021}, doi = {10.5802/aif.3404}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3404/} }
TY - JOUR AU - Bonnafé, Cédric AU - Maksimau, Ruslan TI - Fixed points in smooth Calogero–Moser spaces JO - Annales de l'Institut Fourier PY - 2021 SP - 643 EP - 678 VL - 71 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3404/ DO - 10.5802/aif.3404 LA - en ID - AIF_2021__71_2_643_0 ER -
%0 Journal Article %A Bonnafé, Cédric %A Maksimau, Ruslan %T Fixed points in smooth Calogero–Moser spaces %J Annales de l'Institut Fourier %D 2021 %P 643-678 %V 71 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3404/ %R 10.5802/aif.3404 %G en %F AIF_2021__71_2_643_0
Bonnafé, Cédric; Maksimau, Ruslan. Fixed points in smooth Calogero–Moser spaces. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 643-678. doi : 10.5802/aif.3404. http://www.numdam.org/articles/10.5802/aif.3404/
[1] On singular Calogero–Moser spaces, Bull. Lond. Math. Soc., Volume 41 (2009) no. 2, pp. 315-326 | DOI | MR | Zbl
[2] Hyperplane arrangements associated to symplectic quotient singularities, Phenomenological approach to algebraic geometry (Banach Center Publ.), Volume 116, Polish Academy of Sciences, Institute of Mathematics, 2018, pp. 25-45 | MR | Zbl
[3] A bijection on core partitions and a parabolic quotient of the affine symmetric group, J. Comb. Theory, Volume 116 (2009) no. 8, pp. 1344-1360 | DOI | MR | Zbl
[4] Cherednik algebras and Calogero–Moser cells (2017) (https://arxiv.org/abs/1708.09764)
[5] On the cohomology of Calogero–Moser spaces, Int. Math. Res. Not., Volume 2020 (2018) no. 4, pp. 1091-1111 | Zbl
[6] Calogero–Moser families and cellular characters: computational aspects (in preparation)
[7] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[8] Zyklotomische Heckealgebren, Représentations unipotentes génériques et blocs des groupes réductifs finis avec un appendice de George Lusztig (Broué, Michel al, ed.) (Astérisque), Volume 212, Société Mathématique de France, 1993, pp. 119-189 | Numdam | Zbl
[9] Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, Finite reductive groups: related structures and representations. Proceedings of an international conference, Luminy, France, October 1994 (Progress in Mathematics), Volume 141, Birkhäuser, 1996, pp. 73-139 | Zbl
[10] Geometry of the moment map for representations of quivers, Compos. Math., Volume 126 (2001) no. 3, pp. 257-293 | DOI | MR | Zbl
[11] Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl
[12] Baby Verma modules for rational Cherednik algebras, Bull. Lond. Math. Soc., Volume 35 (2003) no. 3, pp. 321-336 | DOI | MR | Zbl
[13] Quiver varieties, category for rational Cherednik algebras, and Hecke algebras, IMRP, Int. Math. Res. Pap., Volume 2008 (2008), rpn006, 69 pages
[14] Infinite Dimensional Lie Algebras – An Introduction, Progress in Mathematics, 44, Birkhäuser, 1983 | Zbl
[15] Non commutative smoothness and coadjoint orbits, J. Algebra, Volume 258 (2002) no. 1, pp. 60-70 | DOI | Zbl
[16] Edge sequences, ribbon tableaux, and an action of affine permutations, Eur. J. Comb., Volume 20 (1999) no. 2, pp. 179-195 | DOI | MR | Zbl
[17] Quiver varieties and Weyl group actions, Ann. Inst. Fourier, Volume 50 (2000) no. 2, pp. 461-489 | DOI | Numdam | MR | Zbl
[18] The combinatorics of -fixed points in generalized Calogero-Moser spaces and Hilbert schemes, J. Algebra, Volume 556 (2020), pp. 936-992 | DOI | MR | Zbl
[19] Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., Volume 18 (2015), pp. 266-307 | DOI | MR
Cité par Sources :