Dans ce travail, nous étudions les fibrés uniformes de Steiner de type , ou est le degré le plus bas de la décomposition. Nous prouvons des limites supérieures et inférieures strictes pour le rang dans le cas et, de plus, nous donnons des familles d’exemples pour chaque rang possible et nous expliquons quelle relation existe entre les familles. Après avoir traité le cas en général, nous conjecturons que chaque fibré uniforme de Steiner de type est obtenu par la technique de construction proposée.
In this work we study -type uniform Steiner bundles, being the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case and moreover we give families of examples for every allowed possible rank and explain which relation exists between the families. After dealing with the case in general, we conjecture that every -type uniform Steiner bundle is obtained through the proposed construction technique.
Révisé le :
Accepté le :
Publié le :
Keywords: Uniform bundles, Steiner bundles
Mot clés : Fibrés de Steiner, Fibrés uniformes
@article{AIF_2021__71_2_447_0, author = {Marchesi, Simone and Mir\'o-Roig, Rosa Maria}, title = {Uniform {Steiner} bundles}, journal = {Annales de l'Institut Fourier}, pages = {447--472}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {2}, year = {2021}, doi = {10.5802/aif.3403}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3403/} }
TY - JOUR AU - Marchesi, Simone AU - Miró-Roig, Rosa Maria TI - Uniform Steiner bundles JO - Annales de l'Institut Fourier PY - 2021 SP - 447 EP - 472 VL - 71 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3403/ DO - 10.5802/aif.3403 LA - en ID - AIF_2021__71_2_447_0 ER -
%0 Journal Article %A Marchesi, Simone %A Miró-Roig, Rosa Maria %T Uniform Steiner bundles %J Annales de l'Institut Fourier %D 2021 %P 447-472 %V 71 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3403/ %R 10.5802/aif.3403 %G en %F AIF_2021__71_2_447_0
Marchesi, Simone; Miró-Roig, Rosa Maria. Uniform Steiner bundles. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 447-472. doi : 10.5802/aif.3403. http://www.numdam.org/articles/10.5802/aif.3403/
[1] Jumping pairs of Steiner bundles, Forum Math., Volume 27 (2015), pp. 3233-3267 | MR | Zbl
[2] Uniform vector bundles of rank on , Tsukuba J. Math., Volume 7 (1983), pp. 215-226 | MR | Zbl
[3] Weakly uniform rank two vector bundles on multiprojective spaces, Bull. Aust. Math. Soc., Volume 84 (2011) no. 2, pp. 255-260 | DOI | MR | Zbl
[4] Uniform bundles on quadric surfaces and some related varieties, J. Lond. Math. Soc., Volume 31 (1985) no. 2, pp. 211-223 | DOI | MR | Zbl
[5] On families of rank-2 uniform bundles on Hirzebruch surfaces and Hilbert schemes of their scrolls, Rend. Ist. Mat. Univ. Trieste, Volume 47 (2015), pp. 27-44 | MR | Zbl
[6] Arrangements of hyperplanes and vector bundles on , Duke Math. J., Volume 71 (1993) no. 3, pp. 633-664 | MR
[7] Exemples des fibrés uniformes non homogènes sur , C. R. Math. Acad. Sci. Paris, Volume 291 (1980), pp. 125-128 | MR | Zbl
[8] Les fibrés uniformes de rang sur sont homogènes, Math. Ann., Volume 231 (1978) no. 3, pp. 217-227 | DOI | Zbl
[9] Des fibrés uniformes non homogènes, Math. Ann., Volume 239 (1979) no. 2, pp. 185-192 | DOI | MR | Zbl
[10] Les fibrés uniformes de rang au plus sur sont ceux qu’on croit, Vector bundles and differential equations (Nice, 1979) (Progress in Mathematics), Volume 7, Birkhäuser (1980), pp. 37-63 | DOI | Zbl
[11] Sur les fibrés uniformes de rang sur , Mém. Soc. Math. Fr., Nouv. Sér., Volume 7 (1982), pp. 1-60 | Zbl
[12] Spaces of matrices of constant rank and uniform vector bundles, Linear Algebra Appl., Volume 507 (2016), pp. 474-485 | DOI | MR | Zbl
[13] Uniform vector bundles on Fano manifolds and applications, J. Reine Angew. Math., Volume 664 (2012), pp. 141-162 | MR | Zbl
[14] Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhäuser, 1980
[15] Uniform vector bundles on a projective space, J. Math. Soc. Japan, Volume 28 (1976), pp. 123-132 | MR
[16] Vector bundles on the projective plane, Proc. Lond. Math. Soc., Volume 11 (1961), pp. 623-640 | DOI | MR | Zbl
[17] On uniform vector bundles, Math. Ann., Volume 195 (1972), pp. 245-248 | DOI | MR | Zbl
[18] Uniform vector bundles on Fano manifolds and an algebraic proof of Hwang–Mok characterization of Grassmannians, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 329-340 | DOI | Zbl
[19] Remarks on uniform bundles on projective spaces, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Volume 64 (2018) no. 2, pp. 449-463 | DOI | MR | Zbl
Cité par Sources :