Dans cet article nous montrons qu’il existe des systèmes dynamiques lisses définis sur des variétés riemanniennes non compactes qui ne satisfont pas l’inégalité de Ruelle entre l’entropie et les exposants de Lyapounov. Plus précisément, nous construisons des systèmes dynamiques qui ressemblent aux flots de suspension au-dessus de transformations d’échanges d’intervalles dénombrables, de sorte que le comportement local est celui d’une translation, alors que l’entropie peut prendre n’importe quelle valeur non nulle.
In this paper we show that there exist smooth dynamical systems defined on noncompact Riemannian manifolds that do not satisfy Ruelle’s inequality between entropy and Lyapunov exponents. More precisely, we construct dynamical systems that look like suspension flows over countable interval exchange transformations, so that the local behavior is that of a translation, whereas the entropy can take any nonzero value.
Révisé le :
Accepté le :
Publié le :
Keywords: ergodic theory, Riemannian geometry, smooth dynamical systems, Lyapunov exponents, Ruelle’s inequality
Mot clés : théorie ergodique, géométrie riemannienne, systèmes dynamiques lisses, exposants de Lyapounov, inégalité de Ruelle.
@article{AIF_2017__67_1_23_0, author = {Riquelme, Felipe}, title = {Counterexamples to {Ruelle{\textquoteright}s} inequality in the noncompact case}, journal = {Annales de l'Institut Fourier}, pages = {23--41}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {1}, year = {2017}, doi = {10.5802/aif.3076}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3076/} }
TY - JOUR AU - Riquelme, Felipe TI - Counterexamples to Ruelle’s inequality in the noncompact case JO - Annales de l'Institut Fourier PY - 2017 SP - 23 EP - 41 VL - 67 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3076/ DO - 10.5802/aif.3076 LA - en ID - AIF_2017__67_1_23_0 ER -
%0 Journal Article %A Riquelme, Felipe %T Counterexamples to Ruelle’s inequality in the noncompact case %J Annales de l'Institut Fourier %D 2017 %P 23-41 %V 67 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3076/ %R 10.5802/aif.3076 %G en %F AIF_2017__67_1_23_0
Riquelme, Felipe. Counterexamples to Ruelle’s inequality in the noncompact case. Annales de l'Institut Fourier, Tome 67 (2017) no. 1, pp. 23-41. doi : 10.5802/aif.3076. http://www.numdam.org/articles/10.5802/aif.3076/
[1] An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997, xii+284 pages | DOI
[2] Cutting and stacking, interval exchanges and geometric models, Israel J. Math., Volume 50 (1985) no. 1-2, pp. 160-168 | DOI
[3] An entropy estimate for infinite interval exchange transformations, Math. Z., Volume 272 (2012) no. 1-2, pp. 17-29 | DOI
[4] Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, 1222, Springer-Verlag, Berlin, 1986, viii+283 pages
[5] Quelques propriétés des exposants caractéristiques, École d’été de probabilités de Saint-Flour, XII—1982 (Lecture Notes in Math.), Volume 1097, Springer, Berlin, 1984, pp. 305-396 | DOI
[6] A class of probability measures on groups arising from some problems in ergodic theory, Probability measures on groups (Proc. Fifth Conf., Oberwolfach, 1978) (Lecture Notes in Math.), Volume 706, Springer, Berlin, 1979, pp. 220-238
[7] The existence of complete Riemannian metrics, Proc. Amer. Math. Soc., Volume 12 (1961), pp. 889-891
[8] A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., Volume 19 (1968), pp. 179-210
[9] An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., Volume 9 (1978) no. 1, pp. 83-87 | DOI
[10] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982, ix+250 pages
Cité par Sources :