Considérons un diagramme d’espaces , construisons le push-out homotopique, puis le pull-back homotopique du diagramme obtenu en oubliant l’objet initial . Nous comparons la différence entre et ce pull-back homomotopique. Cette différence est mesurée en termes des fibres homotopiques des applications originales. En restreignant notre attention sur la connectivité de ces applications nous obtenons la version classique du Théorème de Blakers–Massey.
Consider a push-out diagram of spaces , construct the homotopy push-out, and then the homotopy pull-back of the diagram one gets by forgetting the initial object . We compare the difference between and this homotopy pull-back. This difference is measured in terms of the homotopy fibers of the original maps. Restricting our attention to the connectivity of these maps, we recover the classical Blakers–Massey Theorem.
Révisé le :
Accepté le :
Publié le :
Keywords: homotopy excision, cellular inequality, total fiber, homotopy localization
Mot clés : excision homotopique, inégalité cellulaire, fibre totale, localisation homotopique
@article{AIF_2016__66_6_2641_0, author = {Chach\'olski, Wojciech and Scherer, J\'er\^ome and Werndli, Kay}, title = {Homotopy excision and cellularity}, journal = {Annales de l'Institut Fourier}, pages = {2641--2665}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3074}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3074/} }
TY - JOUR AU - Chachólski, Wojciech AU - Scherer, Jérôme AU - Werndli, Kay TI - Homotopy excision and cellularity JO - Annales de l'Institut Fourier PY - 2016 SP - 2641 EP - 2665 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3074/ DO - 10.5802/aif.3074 LA - en ID - AIF_2016__66_6_2641_0 ER -
%0 Journal Article %A Chachólski, Wojciech %A Scherer, Jérôme %A Werndli, Kay %T Homotopy excision and cellularity %J Annales de l'Institut Fourier %D 2016 %P 2641-2665 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3074/ %R 10.5802/aif.3074 %G en %F AIF_2016__66_6_2641_0
Chachólski, Wojciech; Scherer, Jérôme; Werndli, Kay. Homotopy excision and cellularity. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2641-2665. doi : 10.5802/aif.3074. http://www.numdam.org/articles/10.5802/aif.3074/
[1] Calculus of functors and model categories, Adv. Math., Volume 214 (2007) no. 1, pp. 92-115 | DOI
[2] The homotopy groups of a triad. II, Ann. of Math. (2), Volume 55 (1952), pp. 192-201 | DOI
[3] Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc., Volume 7 (1994) no. 4, pp. 831-873 | DOI
[4] Homotopical excision, and Hurewicz theorems for -cubes of spaces, Proc. London Math. Soc. (3), Volume 54 (1987) no. 1, pp. 176-192 | DOI
[5] Closed classes, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guíxols, 1994) (Progr. Math.), Volume 136, Birkhäuser, Basel, 1996, pp. 95-118 | DOI
[6] On the functors and , Duke Math. J., Volume 84 (1996) no. 3, pp. 599-631 | DOI
[7] Desuspending and delooping cellular inequalities, Invent. Math., Volume 129 (1997) no. 1, pp. 37-62 | DOI
[8] A generalization of the triad theorem of Blakers-Massey, Topology, Volume 36 (1997) no. 6, pp. 1381-1400 | DOI
[9] Cellular properties of nilpotent spaces, Geom. Topol., Volume 19 (2015) no. 5, pp. 2741-2766 | DOI
[10] Homotopy theory of diagrams, Mem. Amer. Math. Soc., Volume 155 (2002) no. 736, x+90 pages | DOI
[11] Higher homotopy excision and Blakers-Massey theorems for structured ring spectra (2014) (preprint, http://arxiv.org/abs/1402.4775)
[12] Homotopy theory of G–diagrams and equivariant excision, Algebr. Geom. Topol., Volume 16 (2016) no. 1, pp. 325-395 | DOI
[13] Higher-dimensional crossed modules and the homotopy groups of -ads, J. Pure Appl. Algebra, Volume 46 (1987) no. 2-3, pp. 117-136 | DOI
[14] Cellular spaces, null spaces and homotopy localization, Lecture Notes in Mathematics, 1622, Springer-Verlag, Berlin, 1996, xiv+199 pages
[15] Two completion towers for generalized homology, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999) (Contemp. Math.), Volume 265, Amer. Math. Soc., Providence, RI, 2000, pp. 27-39 | DOI
[16] Calculus. II. Analytic functors, -Theory, Volume 5 (1991/92) no. 4, pp. 295-332 | DOI
[17] Derivators, pointed derivators and stable derivators, Algebr. Geom. Topol., Volume 13 (2013) no. 1, pp. 313-374 | DOI
[18] Fake wedges, Trans. Amer. Math. Soc., Volume 366 (2014) no. 7, pp. 3771-3786 | DOI
[19] Pull-backs in homotopy theory, Canad. J. Math., Volume 28 (1976) no. 2, pp. 225-263 | DOI
[20] Cubical Homotopy Theory, new mathematical monographs, 28, Cambridge University Press, 2015, xv+631 pages
[21] A remark on “homotopy fibrations”, Manuscripta Math., Volume 12 (1974), pp. 113-120 | DOI
[22] Orthogonal calculus, Trans. Amer. Math. Soc., Volume 347 (1995) no. 10, pp. 3743-3796 | DOI
[23] Elements of homotopy theory, Graduate Texts in Mathematics, 61, Springer-Verlag, New York-Berlin, 1978, xxi+744 pages
Cité par Sources :