Nous étudions les orbites périodiques du champ de Reeb sur les hypersurfaces non-dégénérées et dynamiquement convexes de en suivant les travaux de Long et Zhu mais en utilisant l’homologie symplectique -équivariante. Nous démontrons qu’il existe au moins orbites simples de Reeb sur toute hypersurface étoil�e et non dégénérée de satisfaisant la condition que le plus petit indice de Conley–Zehnder est au moins . Cette dernière condition est plus faible que celle de convexité dynamique.
We study periodic orbits of the Reeb vector field on a nondegenerate dynamically convex starshaped hypersurface in along the lines of Long and Zhu [24], but using properties of the - equivariant symplectic homology. We prove that there exist at least distinct simple periodic orbits on any nondegenerate starshaped hypersurface in satisfying the condition that the minimal Conley–Zehnder index is at least . The condition is weaker than dynamical convexity.
Révisé le :
Accepté le :
Publié le :
Keywords: Reeb dynamics, Equivariant symplectic homology, Index jump
Mot clés : Dynamique de Reeb, Homologie symplectique équivariante, Saut d’indice
@article{AIF_2016__66_6_2485_0, author = {Gutt, Jean and Kang, Jungsoo}, title = {On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$}, journal = {Annales de l'Institut Fourier}, pages = {2485--2505}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3069}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3069/} }
TY - JOUR AU - Gutt, Jean AU - Kang, Jungsoo TI - On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$ JO - Annales de l'Institut Fourier PY - 2016 SP - 2485 EP - 2505 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3069/ DO - 10.5802/aif.3069 LA - en ID - AIF_2016__66_6_2485_0 ER -
%0 Journal Article %A Gutt, Jean %A Kang, Jungsoo %T On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$ %J Annales de l'Institut Fourier %D 2016 %P 2485-2505 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3069/ %R 10.5802/aif.3069 %G en %F AIF_2016__66_6_2485_0
Gutt, Jean; Kang, Jungsoo. On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2485-2505. doi : 10.5802/aif.3069. http://www.numdam.org/articles/10.5802/aif.3069/
[1] Théorie de Morse et homologie de Floer, Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2010, xii+548 pages
[2] Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., Volume 38 (1985) no. 3, pp. 253-289 | DOI
[3] A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn., Volume 1 (2007) no. 4, pp. 597-613 | DOI
[4] Fredholm theory and transversality for the parametrized and for the -invariant symplectic action, J. Eur. Math. Soc. (JEMS), Volume 12 (2010) no. 5, pp. 1181-1229 | DOI
[5] -equivariant symplectic homology and linearized contact homology (2012) (http://arxiv.org/abs/1212.3731v1)
[6] The index of Floer moduli problems for parametrized action functionals, Geom. Dedicata, Volume 165 (2013), pp. 5-24 | DOI
[7] Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., Volume 37 (1984) no. 2, pp. 207-253 | DOI
[8] From one Reeb orbit to two (2012) (to appear in J. Diff. Geom., http://arxiv.org/abs/1202.4839)
[9] Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 19, Springer-Verlag, Berlin, 1990, x+247 pages
[10] Convex Hamiltonian energy surfaces and their periodic trajectories, Comm. Math. Phys., Volume 113 (1987) no. 3, pp. 419-469 | DOI
[11] On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. (2), Volume 112 (1980) no. 2, pp. 283-319 | DOI
[12] Iterated index and the mean Euler characterstic, J. Topol. Anal., Volume 7 (2015), pp. 453-481 | DOI
[13] Closed Reeb orbits on the sphere and symplectically degenerate maxima, Acta Math. Vietnam., Volume 38 (2013) no. 1, pp. 55-78 | DOI
[14] Perfect Reeb flows and action-index relations, Geom. Dedicata, Volume 174 (2015), pp. 105-120 | DOI
[15] Generalized Conley-Zehnder index, Annales de la faculté des sciences de Toulouse, Volume 23 (2014) no. 4, pp. 907-932 | DOI
[16] The positive equivariant symplectic homology as an invariant for some contact manifolds (2015) (to appear in Journal of Symplectic Geometry, http://arxiv.org/abs/1503.01443)
[17] The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), Volume 148 (1998) no. 1, pp. 197-289 | DOI
[18] Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), Volume 157 (2003) no. 1, pp. 125-255 | DOI
[19] The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol., Volume 13 (2009) no. 2, pp. 901-941 | DOI
[20] Equivariant symplectic homology and multiple closed Reeb orbits, Internat. J. Math., Volume 24 (2013) no. 13, 1350096 pages | DOI
[21] The existence of two closed characteristics on every compact star-shaped hypersurface in , Acta Mathematica Sinica, English Series, Volume 32 (2016) no. 1, pp. 40-53 | DOI
[22] Symmetric closed characteristics on symmetric compact convex hypersurfaces in , Commun. Math. Stat., Volume 2 (2014) no. 3-4, pp. 393-411 | DOI
[23] Index theory for symplectic paths with applications, Progress in Mathematics, 207, Birkhäuser Verlag, 2002, xxiv+380 pages
[24] Closed characteristics on compact convex hypersurfaces in , Ann. of Math. (2), Volume 155 (2002) no. 2, pp. 317-368 | DOI
[25] Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Differential Equations, Volume 33 (1979) no. 3, pp. 336-352 | DOI
[26] Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997) (IAS/Park City Math. Ser.), Volume 7, Amer. Math. Soc., Providence, 1999, pp. 143-229
[27] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., Volume 45 (1992) no. 10, pp. 1303-1360 | DOI
[28] A biased view of symplectic cohomology, Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, pp. 211-253
[29] Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 985-1033 | DOI
[30] Symmetric closed characteristics on symmetric compact convex hypersurfaces in , J. Differential Equations, Volume 246 (2009) no. 11, pp. 4322-4331 | DOI
[31] On a conjecture of Anosov, Adv. Math., Volume 230 (2012) no. 4-6, pp. 1597-1617 | DOI
[32] Closed characteristics on compact convex hypersurfaces in (2013) (http://arxiv.org/abs/1305.4680)
[33] Resonance identity, stability, and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Math. J., Volume 139 (2007) no. 3, pp. 411-462 | DOI
Cité par Sources :