On démontre une classification complète des potentiels méromorphiquement intégrables homogènes de degré , analytiques rééls sur . Dans le cas plus général où est seulement méromorphe sur un ouvert d’une variété algébrique, on démontre une classification de tous les potentiels intégrables ayant un point de Darboux tel que et . Enfin, on présente une conjecture pour les autres valeurs propres et le cas des points de Darboux dégénérés .
We give a complete classification of meromorphically integrable homogeneous potentials of degree which are real analytic on . In the more general case when is only meromorphic on an open set of an algebraic variety, we give a classification of all integrable potentials having a Darboux point with and . We eventually present a conjecture for the other eigenvalues and the degenerate Darboux point case .
Révisé le :
Accepté le :
Publié le :
Keywords: Morales-Ramis theory, homogeneous potentials, D-finiteness, higher variational equations
Mot clés : Théorie de Morales-Ramis, potentiels homogènes, D-finitude, équations variationelles supérieures
@article{AIF_2016__66_6_2253_0, author = {Combot, Thierry}, title = {Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues}, journal = {Annales de l'Institut Fourier}, pages = {2253--2298}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3063}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3063/} }
TY - JOUR AU - Combot, Thierry TI - Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues JO - Annales de l'Institut Fourier PY - 2016 SP - 2253 EP - 2298 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3063/ DO - 10.5802/aif.3063 LA - en ID - AIF_2016__66_6_2253_0 ER -
%0 Journal Article %A Combot, Thierry %T Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues %J Annales de l'Institut Fourier %D 2016 %P 2253-2298 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3063/ %R 10.5802/aif.3063 %G en %F AIF_2016__66_6_2253_0
Combot, Thierry. Integrable planar homogeneous potentials of degree $-1$ with small eigenvalues. Annales de l'Institut Fourier, Tome 66 (2016) no. 6, pp. 2253-2298. doi : 10.5802/aif.3063. http://www.numdam.org/articles/10.5802/aif.3063/
[1] Non-integrability of some few body problems in two degrees of freedom, Qual. Theory Dyn. Syst., Volume 8 (2009) no. 2, pp. 209-239 | DOI
[2] Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999, xvi+664 pages | DOI
[3] Méthodes effectives pour l’intégrabilité des systèmes dynamiques, Université de Limoges, France (2012) (Ph. D. Thesis)
[4] A reduction method for higher order variational equations of Hamiltonian systems, Symmetries and related topics in differential and difference equations (Contemp. Math.), Volume 549, Amer. Math. Soc., Providence, RI, 2011, pp. 1-15 | DOI
[5] Les systèmes hamiltoniens et leur intégrabilité, Cours Spécialisés [Specialized Courses], 8, Société Mathématique de France, Paris; EDP Sciences, Les Ulis, 2001, viii+170 pages
[6] On rational solutions of systems of linear differential equations, J. Symbolic Comput., Volume 28 (1999) no. 4-5, pp. 547-567 (Differential algebra and differential equations) | DOI
[7] Fast algorithms for polynomial solutions of linear differential equations, ISSAC’05, ACM, New York, 2005, p. 45-52 (electronic) | DOI
[8] Sur la non-intégrabilité du problème plan des trois corps de masses égales, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000) no. 5, pp. 391-394 | DOI
[9] Integrability conditions at order 2 for homogeneous potentials of degree , Nonlinearity, Volume 26 (2013) no. 1, pp. 95-120 | DOI
[10] A note on algebraic potentials and Morales-Ramis theory, Celestial Mechanics and Dynamical Astronomy, Volume 115 (2013) no. 4, pp. 397-404 | DOI
[11] Third order integrability conditions for homogeneous potentials of degree , J. Math. Phys., Volume 53 (2012) no. 8, Paper #082704, 26 pp. pages | DOI
[12] Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 7, pp. 2839-2890 http://aif.cedram.org/item?id=AIF_2009__59_7_2839_0 | DOI
[13] A search for integrable two-dimensional Hamiltonian systems with polynomial potential, Phys. Lett. A, Volume 96 (1983) no. 6, pp. 273-278 | DOI
[14] On Riemann’s equations which are solvable by quadratures, Funkcial. Ekvac., Volume 12 (1969/1970), pp. 269-281
[15] Advanced Applications of the Holonomic Systems Approach, RISC, Johannes Kepler University, Linz, Austria (2009) (Ph. D. Thesis)
[16] A fast approach to creative telescoping, Math. Comput. Sci., Volume 4 (2010) no. 2-3, pp. 259-266 | DOI
[17] HolonomicFunctions, 2010 (http://www.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html)
[18] All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A, Volume 327 (2004) no. 5-6, pp. 461-473 | DOI
[19] Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., Volume 46 (2005) no. 6, 062901, 33 pages | DOI
[20] Non-integrability of the three-body problem, Celestial Mech. Dynam. Astronom., Volume 110 (2011) no. 1, pp. 17-30 | DOI
[21] Differential Galois theory and non-integrability of Hamiltonian systems, Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999, xiv+167 pages | DOI
[22] Galoisian obstructions to integrability of Hamiltonian systems. I, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-95
[23] Galoisian obstructions to integrability of Hamiltonian systems. II, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 97-111
[24] A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 113-120
[25] Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 6, pp. 845-884 | DOI
[26] On the meromorphic non-integrability of some -body problems, Discrete Contin. Dyn. Syst., Volume 24 (2009) no. 4, pp. 1225-1273 | DOI
[27] Handbook of exact solutions for ordinary differential equations, Chapman & Hall/CRC, Boca Raton, FL, 2003, xxvi+787 pages
[28] Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, Berlin, 2003, xviii+438 pages | DOI
[29] The meromorphic non-integrability of the three-body problem, J. Reine Angew. Math., Volume 537 (2001), pp. 127-149 | DOI
[30] On some exceptional cases in the integrability of the three-body problem, Celestial Mech. Dynam. Astronom., Volume 99 (2007) no. 1, pp. 23-29 | DOI
[31] A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential, Physica D: Nonlinear Phenomena, Volume 29 (1987) no. 1-2, pp. 128-142 | DOI
[32] A holonomic systems approach to special functions identities, J. Comput. Appl. Math., Volume 32 (1990) no. 3, pp. 321-368 | DOI
Cité par Sources :