Le but de cet article est de montrer qu’il existe des restrictions aux groupes fondamentaux que peuvent avoir les variétés admettant une bonne complexification, en démontrant le théorème suivant de décomposition, de type Cheeger–Gromoll : Toute variété fermée admettant une bonne complexification a un recouvrement fini , possédant un structure de fibré de base et de fibre ayant une bonne complexification et un premier nombre de Betti virtuel nul. On donne plusieurs applications de ce théorème aux variétés de dimension au plus .
The purpose of this paper is to produce restrictions on fundamental groups of manifolds admitting good complexifications by proving the following Cheeger-Gromoll type splitting theorem: Any closed manifold admitting a good complexification has a finite-sheeted regular covering such that admits a fiber bundle structure with base and fiber that admits a good complexification and also has zero virtual first Betti number. We give several applications to manifolds of dimension at most 5.
Accepté le :
Publié le :
Keywords: Good complexification, splitting theorem, affine variety, fundamental group, Geometrization theorem, virtual Betti number.
Mot clés : bonne complexification, théorème de décomposition, variété affine, groupe fondamental, théorème de géométrisation, nombre de Betti virtuel.
@article{AIF_2016__66_5_1965_0, author = {Biswas, Indranil and Mj, Mahan and Parameswaran, A. J.}, title = {A splitting theorem for good complexifications}, journal = {Annales de l'Institut Fourier}, pages = {1965--1985}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {5}, year = {2016}, doi = {10.5802/aif.3054}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3054/} }
TY - JOUR AU - Biswas, Indranil AU - Mj, Mahan AU - Parameswaran, A. J. TI - A splitting theorem for good complexifications JO - Annales de l'Institut Fourier PY - 2016 SP - 1965 EP - 1985 VL - 66 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3054/ DO - 10.5802/aif.3054 LA - en ID - AIF_2016__66_5_1965_0 ER -
%0 Journal Article %A Biswas, Indranil %A Mj, Mahan %A Parameswaran, A. J. %T A splitting theorem for good complexifications %J Annales de l'Institut Fourier %D 2016 %P 1965-1985 %V 66 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3054/ %R 10.5802/aif.3054 %G en %F AIF_2016__66_5_1965_0
Biswas, Indranil; Mj, Mahan; Parameswaran, A. J. A splitting theorem for good complexifications. Annales de l'Institut Fourier, Tome 66 (2016) no. 5, pp. 1965-1985. doi : 10.5802/aif.3054. http://www.numdam.org/articles/10.5802/aif.3054/
[1] The virtual Haken conjecture, Doc. Math., Volume 18 (2013), pp. 1045-1087 (With an appendix by Agol, Daniel Groves, and Jason Manning)
[2] Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, Providence, RI, 1996, xii+140 pages | DOI
[3] Solvable fundamental groups of algebraic varieties and Kähler manifolds, Compositio Math., Volume 116 (1999) no. 2, pp. 173-188 | DOI
[4] 3-manifold groups (preprint, http://arxiv.org/abs/1205.0202v2)
[5] Quasiprojective three-manifold groups and complexification of three-manifolds, Int. Math. Res. Not., Volume 2015 (2015) no. 20, pp. 10041-10068 | DOI
[6] Relatively hyperbolic groups, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 810-840 | DOI
[7] On quasi-Albanese maps (preliminary version, https://www.math.kyoto-u.ac.jp/~fujino/quasi-albanese.pdf.)
[8] Curvature, diameter and Betti numbers, Comment. Math. Helv., Volume 56 (1981) no. 2, pp. 179-195 | DOI
[9] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI
[10] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295
[11] Number of Questions (2014) (preprint)
[12] Coxeter groups are virtually special, Adv. Math., Volume 224 (2010) no. 5, pp. 1890-1903 | DOI
[13] A proof of the Smale conjecture, , Ann. of Math. (2), Volume 117 (1983) no. 3, pp. 553-607 | DOI
[14] Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 23 (1976) no. 3, pp. 525-544
[15] On complexifications of differentiable manifolds, Invent. Math., Volume 44 (1978) no. 1, pp. 46-64 | DOI
[16] The topology of complex projective varieties after S. Lefschetz, Topology, Volume 20 (1981) no. 1, pp. 15-51 | DOI
[17] The growth rate of symplectic homology and affine varieties, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 369-442 | DOI
[18] The second main theorem for holomorphic curves into semi-abelian varieties, Acta Math., Volume 188 (2002) no. 1, pp. 129-161 | DOI
[19] Riemannian geometry, Graduate Texts in Mathematics, 171, Springer, New York, 2006, xvi+401 pages
[20] Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3), Volume 71 (1995) no. 3, pp. 585-617 | DOI
[21] Morphismes universels et variété d’Albanese, Séminaire Claude Chevalley (1958-1959), Secrétariat mathématique, 1960 no. 10, pp. 1-22
[22] Diffeomorphisms of the -sphere, Proc. Amer. Math. Soc., Volume 10 (1959), pp. 621-626
[23] On the Albanese map for smooth quasi-projective varieties, Math. Ann., Volume 325 (2003) no. 1, pp. 1-17 | DOI
[24] Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes, Ann. Sci. École Norm. Sup. (4), Volume 10 (1977) no. 4, pp. 517-546
[25] Polynomials and vanishing cycles, Cambridge Tracts in Mathematics, 170, Cambridge University Press, Cambridge, 2007, xii+253 pages | DOI
[26] Complexifications of nonnegatively curved manifolds, J. Eur. Math. Soc. (JEMS), Volume 5 (2003) no. 1, pp. 69-94 | DOI
[27] The structure of groups with a quasi-convex hierarchy (2012) (preprint)
Cité par Sources :