Nous étudions les anneaux de déformation potentiellement cristallins pour une représentation Galoisienne ordinaire . Nous considérons des déformations à poids de Hodge-Tate et type inertiel choisi de telle sorte qu’il contient un poids Fontaine-Laffaille pour et un seul. Nous montrons que dans cette situation l’espace de déformation potentiellement cristallin est formellement lisse sur et que tout relèvement potentiellement cristallin de est ordinaire. La preuve nécessite une étude fine des conditions imposées par l’opérateur de monodromie sur les modules de Breuil avec donnée de descente, en particulier que la fibre spéciale du lieu de monodromie est formellement lisse sur .
We study potentially crystalline deformation rings for a residual, ordinary Galois representation We consider deformations with Hodge-Tate weights and inertial type chosen to contain exactly one Fontaine-Laffaille modular weight for . We show that, in this setting, the potentially crystalline deformation space is formally smooth over and any potentially crystalline lift is ordinary. The proof requires an understanding of the condition imposed by the monodromy operator on Breuil modules with descent datum, in particular, that this locus mod is formally smooth.
Révisé le :
Accepté le :
Publié le :
Keywords: potentially crystalline deformation rings, Serre-type conjectures, integral $p$-adic Hodge theory
Mot clés : Anneaux de déformation potentiellement cristallins, conjectures de type Serre, théorie de Hodge $p$-adique entière
@article{AIF_2016__66_5_1923_0, author = {Levin, Brandon and Morra, Stefano}, title = {Potentially crystalline deformation rings in the ordinary case}, journal = {Annales de l'Institut Fourier}, pages = {1923--1964}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {5}, year = {2016}, doi = {10.5802/aif.3053}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.3053/} }
TY - JOUR AU - Levin, Brandon AU - Morra, Stefano TI - Potentially crystalline deformation rings in the ordinary case JO - Annales de l'Institut Fourier PY - 2016 SP - 1923 EP - 1964 VL - 66 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.3053/ DO - 10.5802/aif.3053 LA - en ID - AIF_2016__66_5_1923_0 ER -
%0 Journal Article %A Levin, Brandon %A Morra, Stefano %T Potentially crystalline deformation rings in the ordinary case %J Annales de l'Institut Fourier %D 2016 %P 1923-1964 %V 66 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.3053/ %R 10.5802/aif.3053 %G en %F AIF_2016__66_5_1923_0
Levin, Brandon; Morra, Stefano. Potentially crystalline deformation rings in the ordinary case. Annales de l'Institut Fourier, Tome 66 (2016) no. 5, pp. 1923-1964. doi : 10.5802/aif.3053. http://www.numdam.org/articles/10.5802/aif.3053/
[1] Représentations semi-stables et modules fortement divisibles, Invent. Math., Volume 136 (1999) no. 1, pp. 89-122 | DOI
[2] Une application de corps des normes, Compositio Math., Volume 117 (1999) no. 2, pp. 189-203 | DOI
[3] Sur quelques représentations modulaires et -adiques de . I, Compositio Math., Volume 138 (2003) no. 2, pp. 165-188 | DOI
[4] Sur un problème de compatibilité local-global modulo pour , J. Reine Angew. Math., Volume 692 (2014), pp. 1-76 | DOI
[5] Ordinary representations of and fundamental algebraic representations, Duke Math. J., Volume 164 (2015) no. 7, pp. 1271-1352 | DOI
[6] Multiplicités modulaires et représentations de et de en , Duke Math. J., Volume 115 (2002) no. 2, pp. 205-310 (With an appendix by Guy Henniart) | DOI
[7] Multiplicités modulaires raffinées, Bull. Soc. Math. France, Volume 142 (2014) no. 1, pp. 127-175
[8] Towards a modulo Langlands correspondence for , 2016, Memoirs of Amer. Math. Soc., 2013
[9] On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., Volume 155 (2010) no. 1, pp. 105-161 | DOI
[10] Quasi-semi-stable representations, Bull. Soc. Math. France, Volume 137 (2009) no. 2, pp. 185-223
[11] Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 521-567 | DOI
[12] A geometric perspective on the Breuil-Mézard conjecture, J. Inst. Math. Jussieu, Volume 13 (2014) no. 1, pp. 183-223 | DOI
[13] Weight cycling and Serre-type conjectures for unitary groups, Duke Math. J., Volume 162 (2013) no. 9, pp. 1649-1722 | DOI
[14] Lattices in the cohomology of Shimura curves, Invent. Math., Volume 200 (2015) no. 1, pp. 1-96 | DOI
[15] Représentations -adiques des corps locaux. II, The Grothendieck Festschrift, Vol. II (Progr. Math.), Volume 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249-309
[16] Personal communication, email of November 1, 2015
[17] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011) no. 1, pp. 107-144 | DOI
[18] General Serre weight conjectures (2015) (preprint, http://arxiv.org/abs/1509.02527)
[19] The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Volume 2 (2014), e1, 56 pages | DOI
[20] The weight in a Serre-type conjecture for tame -dimensional Galois representations, Duke Math. J., Volume 149 (2009) no. 1, pp. 37-116 | DOI
[21] On local/global compatibility for in the ordinary case (2015) (in preparation)
[22] Crystalline representations and -crystals, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459-496 | DOI
[23] Potentially semi-stable deformation rings, J. Amer. Math. Soc., Volume 21 (2008) no. 2, pp. 513-546 | DOI
[24] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI
[25] Potentially crystalline deformation rings and Serre weight conjectures (Shapes and Shadows) (2015) (in preparation)
[26] On lattices in semi-stable representations: a proof of a conjecture of Breuil, Compos. Math., Volume 144 (2008) no. 1, pp. 61-88 | DOI
[27] On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J., Volume 128 (2005) no. 1, pp. 141-197 | DOI
[28] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | DOI
Cité par Sources :